Energy transfer in reconnection and turbulence

被引:23
作者
Adhikari, S. [1 ]
Parashar, T. N. [1 ,2 ]
Shay, M. A. [1 ,3 ]
Matthaeus, W. H. [1 ,3 ]
Pyakurel, P. S. [4 ]
Fordin, S. [1 ]
Stawarz, J. E. [5 ]
Eastwood, J. P. [5 ]
机构
[1] Univ Delaware, Dept Phys & Astron, Newark, DC 19716 USA
[2] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington 6012, New Zealand
[3] Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DC 19716 USA
[4] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[5] Imperial Coll London, Dept Phys, London SW7 2AZ, England
基金
英国科学技术设施理事会;
关键词
MAGNETIC RECONNECTION; DISSIPATION;
D O I
10.1103/PhysRevE.104.065206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Reconnection and turbulence are two of the most commonly observed dynamical processes in plasmas, but their relationship is still not fully understood. Using 2.5D kinetic particle-in-cell simulations of both strong turbulence and reconnection, we compare the cross-scale transfer of energy in the two systems by analyzing the generalization of the von Karman Howarth equations for Hall magnetohydrodynamics, a formulation that subsumes the third-order law for steady energy transfer rates. Even though the large scale features are quite different, the finding is that the decomposition of the energy transfer is structurally very similar in the two cases. In the reconnection case, the time evolution of the energy transfer also exhibits a correlation with the reconnection rate. These results provide explicit evidence that reconnection dynamics fundamentally involves turbulence-like energy transfer.
引用
收藏
页数:6
相关论文
共 65 条
[1]   Reconnection from a turbulence perspective [J].
Adhikari, S. ;
Shay, M. A. ;
Parashar, T. N. ;
Pyakurel, P. Sharma ;
Matthaeus, W. H. ;
Godzieba, D. ;
Stawarz, J. E. ;
Eastwood, J. P. ;
Dahlin, J. T. .
PHYSICS OF PLASMAS, 2020, 27 (04)
[2]   Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field [J].
Alexakis, Alexandros .
PHYSICAL REVIEW E, 2011, 84 (05)
[3]   Scale Locality of Magnetohydrodynamic Turbulence [J].
Aluie, Hussein ;
Eyink, Gregory L. .
PHYSICAL REVIEW LETTERS, 2010, 104 (08)
[4]   Energy cascade rate in isothermal compressible magnetohydrodynamic turbulence [J].
Andres, N. ;
Sahraoui, F. ;
Galtier, S. ;
Hadid, L. Z. ;
Dmitruk, P. ;
Mininni, P. D. .
JOURNAL OF PLASMA PHYSICS, 2018, 84 (04)
[5]  
[Anonymous], 1980, ANN NY ACAD SCI
[6]   In Situ Observation of Hall Magnetohydrodynamic Cascade in Space Plasma [J].
Bandyopadhyay, Riddhi ;
Sorriso-Valvo, Luca ;
Chasapis, Alexandros ;
Hellinger, Petr ;
Matthaeus, William H. ;
Verdini, Andrea ;
Landi, Simone ;
Franci, Luca ;
Matteini, Lorenzo ;
Giles, Barbara L. ;
Gershman, Daniel J. ;
Moore, Thomas E. ;
Pollock, Craig J. ;
Russell, Christopher T. ;
Strangeway, Robert J. ;
Torbert, Roy B. ;
Burch, James L. .
PHYSICAL REVIEW LETTERS, 2020, 124 (22)
[7]   Turbulence and cooling in galaxy cluster cores [J].
Banerjee, Nilanjan ;
Sharma, Prateek .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 443 (01) :687-697
[8]   Scale-to-scale energy transfer rate in compressible two-fluid plasma turbulence [J].
Banerjee, Supratik ;
Andres, Nahuel .
PHYSICAL REVIEW E, 2020, 101 (04)
[9]   Exact relation with two-point correlation functions and phenomenological approach for compressible magnetohydrodynamic turbulence [J].
Banerjee, Supratik ;
Galtier, Sebastien .
PHYSICAL REVIEW E, 2013, 87 (01)
[10]   MHD turbulence [J].
Andrey Beresnyak .
Living Reviews in Computational Astrophysics, 2019, 5 (1)