Optimal closed-loop control of timed event graphs in dioids

被引:52
作者
Maia, CA [1 ]
Hardouin, L
Santos-Mendes, R
Cottenceau, B
机构
[1] Univ Fed Minas Gerais, Dept Elect Engn, Belo Horizonte, MG, Brazil
[2] Univ Angers, Lab Ingn Syst Automatises, Angers, France
[3] Univ Estadual Campinas, Fac Elect & Comp Engn, BR-13081970 Campinas, SP, Brazil
关键词
control; dioid; discrete-event dynamic systems; just-in-time; (max; plus; algebra; timed Petri nets;
D O I
10.1109/TAC.2003.820666
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note deals with the model-reference control of timed event graphs using the dioid algebra and the residuation theory. It proposes a control structure based on a precompensator and a feedback controller to improve the controlled system performance. It is shown that this approach always leads to an optimal behavior of the closed-loop system. An example is given to illustrate the proposed approach.
引用
收藏
页码:2284 / 2287
页数:4
相关论文
共 13 条
[1]  
Baccelli F, 1992, SYNCHRONIZATION LINE
[2]  
Blyth T. S., 1972, Residuation Theory
[3]   Internal model control and max-algebra: Controller design [J].
Boimond, JL ;
Ferrier, JL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :457-461
[4]   ALGEBRAIC TOOLS FOR THE PERFORMANCE EVALUATION OF DISCRETE EVENT SYSTEMS [J].
COHEN, G ;
MOLLER, P ;
QUADRAT, JP ;
VIOT, M .
PROCEEDINGS OF THE IEEE, 1989, 77 (01) :39-58
[5]   Feedback stabilization of some event graph models [J].
Commault, C .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (10) :1419-1423
[6]   Synthesis of greatest linear feedback for timed-event graphs in dioid [J].
Cottenceau, B ;
Hardouin, L ;
Boimond, JL ;
Ferrier, JL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (06) :1258-1262
[7]   Model reference control for timed event graphs in dioids [J].
Cottenceau, B ;
Hardouin, L ;
Boimond, JL ;
Ferrier, JL .
AUTOMATICA, 2001, 37 (09) :1451-1458
[8]  
Gaubert S, 1992, THEORIE SYSTEMES LIN
[9]   A survey of Petri net methods for controlled discrete event systems [J].
Holloway, LE ;
Krogh, BH ;
Giua, A .
DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 1997, 7 (02) :151-190
[10]  
LHOMMEAU M, 2001, MODEL DES SYST REACT, P463