A NOTE ON HAMILTONICITY OF UNIFORM RANDOM INTERSECTION GRAPHS

被引:4
作者
Bloznelis, Mindaugas [1 ]
Radavicius, Irmantas [1 ]
机构
[1] Vilnius State Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania
关键词
random graph; random intersection graph; Hamilton cycle; clustering; COMPONENT EVOLUTION; VERTEX;
D O I
10.1007/s10986-011-9115-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a collection of n independent random subsets of [m] = {1, 2, ... , m} that are uniformly distributed in the class of subsets of size d, and call any two subsets adjacent whenever they intersect. This adjacency relation defines a graph called the uniform random intersection graph and denoted by G(n,m,d). We fix d = 2,3, ... and study when, as n, m -> infinity, the graph G(n,m,d) contains a Hamilton cycle (the event denoted G(n,m,d) is an element of H). We show that P(G(n,m,d) is an element of H) = o(1) for d(2)nm(-1) - ln m - 2 ln ln m -> -infinity and P(G(n,m,d) is an element of H) = 1 - o(1) for 2nm(-1) - ln m - ln ln m -> +infinity.
引用
收藏
页码:155 / 161
页数:7
相关论文
共 20 条
[11]  
Fill JA, 2000, RANDOM STRUCT ALGOR, V16, P156, DOI 10.1002/(SICI)1098-2418(200003)16:2<156::AID-RSA3>3.0.CO
[12]  
2-H
[13]  
Godehardt E, 2003, STUD CLASS DATA ANAL, P67
[14]   The degree of a typical vertex in generalized random intersection graph models [J].
Jaworski, Jerzy ;
Karonski, Michal ;
Stark, Dudley .
DISCRETE MATHEMATICS, 2006, 306 (18) :2152-2165
[15]   On random intersection graphs: The subgraph problem [J].
Karonski, M ;
Scheinerman, ER ;
Singer-Cohen, KB .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :131-159
[16]  
NIKOLETSEAS S, 2008, 180 AEOLUS U PATR
[17]  
Rybarczyk K, 2010, J APPL PROBAB, V47, P826
[18]  
Shang YL, 2010, ELECTRON J COMB, V17
[19]  
Singer-Cohen K., 1995, Ph.D. thesis