Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting

被引:54
作者
Wang, Shuo [1 ]
Liu, Yude [1 ]
Shi, Wentian [1 ]
Qi, Bin [1 ]
Yang, Jin [1 ]
Zhang, Feifei [1 ]
Han, Dong [1 ]
Ma, Yingyi [1 ]
机构
[1] Beijing Technol & Business Univ, Sch Mat & Mech Engn, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
selective melting laser; high layer thickness fabricated; fine powder; building rate; microstructure; tensile properties; STAINLESS-STEEL POWDER; MECHANICAL-PROPERTIES; BEHAVIOR; PARTS; MICROSTRUCTURE; PARAMETERS; GROWTH; ALLOY; MODEL; CRACK;
D O I
10.3390/ma10091055
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Selective laser melting (SLM) is a potential additive manufacturing (AM) technology. However, the application of SLM was confined due to low efficiency. To improve efficiency, SLM fabrication with a high layer thickness and fine powder was systematically researched, and the void areas and hollow powders can be reduced by using fine powder. Single-track experiments were used to narrow down process parameter windows. Multi-layer fabrication relative density can be reached 99.99% at the exposure time-point distance-hatch space of 120 mu s-40 mu m-240 mu m. Also, the building rate can be up to 12 mm(3)/s, which is about 3-10 times higher than the previous studies. Three typical defects were found by studying deeply, including the un-melted defect between the molten pools, the micro-pore defect within the molten pool, and the irregular distribution of the splashing phenomenon. Moreover, the microstructure is mostly equiaxed crystals and a small amount of columnar crystals. The averages of ultimate tensile strength, yield strength, and elongation are 625 MPa, 525 MPa, and 39.9%, respectively. As exposure time increased from 80 mu s to 200 mu s, the grain size is gradually grown up from 0.98 mu m to 2.23 mu m, the grain aspect ratio is close to 1, and the tensile properties are shown as a downward trend. The tensile properties of high layer thickness fabricated are not significantly different than those with a coarse-powder layer thickness of low in previous research.
引用
收藏
页数:15
相关论文
共 45 条
[1]   Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: A computational framework [J].
Ahmadi, Arman ;
Mirzaeifar, Reza ;
Moghaddam, Narges Shayesteh ;
Turabi, Ali Sadi ;
Karaca, Haluk E. ;
Elahinia, Mohammad .
MATERIALS & DESIGN, 2016, 112 :328-338
[2]   Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting [J].
Capek, Jaroslav ;
Machova, Marketa ;
Fousova, Michaela ;
Kubasek, Jiri ;
Vojtech, Dalibor ;
Fojt, Jaroslav ;
Jablonska, Eva ;
Lipov, Jan ;
Ruml, Tomas .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 69 :631-639
[3]   Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting [J].
Casati, R. ;
Lemke, J. ;
Vedani, M. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2016, 32 (08) :738-744
[4]   Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting [J].
Cherry, J. A. ;
Davies, H. M. ;
Mehmood, S. ;
Lavery, N. P. ;
Brown, S. G. R. ;
Sienz, J. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 76 (5-8) :869-879
[5]   Effect of selective laser melting layout on the quality of stainless steel parts [J].
Dadbakhsh, S. ;
Hao, L. ;
Sewell, N. .
RAPID PROTOTYPING JOURNAL, 2012, 18 (03) :241-249
[6]   Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder [J].
Dai, Donghua ;
Gu, Dongdong .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2015, 88 :95-107
[7]   Metal Additive Manufacturing: A Review [J].
Frazier, William E. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (06) :1917-1928
[8]   Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder JettingSelection Guidelines [J].
Gokuldoss, Prashanth Konda ;
Kolla, Sri ;
Eckert, Juergen .
MATERIALS, 2017, 10 (06)
[9]   Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel [J].
Gunenthiram, Valerie ;
Peyre, Patrice ;
Schneider, Matthieu ;
Dal, Morgan ;
Coste, Frederic ;
Fabbro, Remy .
JOURNAL OF LASER APPLICATIONS, 2017, 29 (02)
[10]   Wire Arc Additive Manufacturing of AZ31 Magnesium Alloy: Grain Refinement by Adjusting Pulse Frequency [J].
Guo, Jing ;
Zhou, Yong ;
Liu, Changmeng ;
Wu, Qianru ;
Chen, Xianping ;
Lu, Jiping .
MATERIALS, 2016, 9 (10)