Invariants of wreath products and subgroups of S6

被引:5
作者
Kang, Ming-chang [1 ]
Wang, Baoshan [2 ]
Zhou, Jian [3 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
NOETHERS PROBLEM; GENERIC POLYNOMIALS; RATIONALITY PROBLEM; FINITE;
D O I
10.1215/21562261-2871749
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a subgroup of S-6, the symmetric group of degree 6. For any field k, G acts naturally on the rational function field k(x(1),...,x(6)) via k-automorphisms defined by sigma center dot x(i) = x(sigma(i)) for any sigma is an element of G and any 1 <= i <= 6. We prove the following theorem. The fixed field k(x(1),..., x(6))(G) is rational (i.e., purely transcendental) over k, except possibly when G is isomorphic to PSL2 (F-5), PGL(2) (F-5), or A(6). When G is isomorphic to PSL2 (F-5) or PGL(2) (F-5), then C(x(1),...,x(6))(G) is C-rational and k(x(1),...,x(6))(G) is stably k-rational for any field k. The invariant theory of wreath products will be investigated also.
引用
收藏
页码:257 / 279
页数:23
相关论文
共 17 条
  • [1] RATIONALITY FOR SUBGROUPS OF S6
    Zhou, Jian
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (07) : 2724 - 2738
  • [2] Rational invariants for subgroups of S5 and S7
    Kang, Ming-chang
    Wang, Baoshan
    JOURNAL OF ALGEBRA, 2014, 413 : 345 - 363
  • [3] NOETHER'S PROBLEM FOR PERMUTATIONAL WREATH PRODUCTS
    Michailov, Ivo M.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2012, 65 (08): : 1023 - 1028
  • [4] W*-superrigidity for group von Neumann algebras of left-right wreath products
    Berbec, Mihaita
    Vaes, Stefaan
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 : 1116 - 1152
  • [5] SOME PRODUCTS OF SUBGROUPS AND VANISHING CONJUGACY CLASS SIZES
    Ballester-Bolinches, Adolfo
    Esteban-Romero, Ramon
    Madanha, Sesuai Y.
    Pedraza-Aguilera, Maria C.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 107 (02) : 271 - 275
  • [6] Noether's problem for some subgroups of S14: The modular case
    Fu, Hang
    Kang, Ming-chang
    Wang, Baoshan
    Zhou, Jian
    JOURNAL OF ALGEBRA, 2021, 568 : 529 - 546
  • [7] Rationality problem for some transitive subgroups of S14
    Wang, Baoshan
    Wang, Guoqi
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 917 - 929
  • [8] Inclusions of innately transitive groups into wreath products in product action with applications to 2-arc-transitive graphs
    Li, Cai-Heng
    Praeger, Cheryl E.
    Schneider, Csaba
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (07) : 2683 - 2700
  • [9] Noether's problem for some semidirect products
    Kang, Ming-chang
    Zhou, Jian
    ADVANCES IN MATHEMATICS, 2020, 368
  • [10] Maximal subgroups of exceptional groups and Quillen's dimension
    Piterman, Kevin I.
    ALGEBRA & NUMBER THEORY, 2024, 18 (07) : 1375 - 1401