A Borg-Levinson Theorem for Higher Order Elliptic Operators

被引:10
|
作者
Krupchyk, Katsiaryna [1 ]
Paivarinta, Lassi [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
D O I
10.1093/imrn/rnr062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the Borg-Levinson theorem for elliptic operators of higher order with constant coefficients. The case of incomplete spectral data is also considered.
引用
收藏
页码:1321 / 1351
页数:31
相关论文
共 50 条
  • [1] A Borg-Levinson theorem for Bessel operators
    Carlson, R
    PACIFIC JOURNAL OF MATHEMATICS, 1997, 177 (01) : 1 - 26
  • [2] Multidimensional Borg-Levinson theorem
    Kurylev, Y
    Lassas, M
    Weder, R
    INVERSE PROBLEMS, 2005, 21 (05) : 1685 - 1696
  • [3] A Borg-Levinson theorem for trees
    Brown, BM
    Weikard, R
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2062): : 3231 - 3243
  • [4] BORG-LEVINSON THEOREM FOR MAGNETIC SCHRODINGER OPERATORS ON A RIEMANNIAN MANIFOLD
    Bellassoued, Mourad
    Choulli, Mourad
    Dos Santos Ferreira, David
    Kian, Yavar
    Stefanov, Plamen
    ANNALES DE L INSTITUT FOURIER, 2021, 71 (06) : 2471 - 2517
  • [5] AN N-DIMENSIONAL BORG-LEVINSON THEOREM
    NACHMAN, A
    SYLVESTER, J
    UHLMANN, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (04) : 595 - 605
  • [6] SOME REMARKS ON THE MULTIDIMENSIONAL BORG-LEVINSON THEOREM
    ISOZAKI, H
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1991, 31 (03): : 743 - 753
  • [7] A multidimensional Borg-Levinson theorem for magnetic Schrodinger operators with partial spectral data
    Kian, Yavar
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (01) : 235 - 269
  • [8] A CONSEQUENCE OF AN N-DIMENSIONAL BORG-LEVINSON THEOREM
    CHOULLI, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (06): : 551 - 553
  • [9] A simple proof of a multidimensional Borg-Levinson type theorem
    Choulli, Mourad
    SEMIGROUP FORUM, 2021, 102 (02) : 575 - 582
  • [10] Borg-Levinson theorem for perturbations of the bi-harmonic operator
    Serov, V. S.
    INVERSE PROBLEMS, 2016, 32 (04)