Toward On-and-Off Magnetism: Reversible Electrochemistry to Control Magnetic Phase Transitions in Spinel Ferrites

被引:73
作者
Dasgupta, Subho [1 ,2 ]
Das, Bijoy [1 ,3 ]
Li, Qiang [1 ]
Wang, Di [1 ,4 ]
Baby, Tessy T. [1 ,3 ]
Indris, Sylvio [3 ,5 ]
Knapp, Michael [3 ,5 ]
Ehrenberg, Helmut [3 ,5 ]
Fink, Karin [1 ]
Kruk, Robert [1 ]
Hahn, Horst [1 ,3 ,6 ]
机构
[1] Karlsruhe Inst Technol, Inst Nanotechnol, D-76344 Eggenstein Leopoldshafen, Germany
[2] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, Karnataka, India
[3] Helmholtz Inst Ulm Electrochem Energy Storage HIU, Helmholtzstr 11, D-89081 Ulm, Germany
[4] Karlsruhe Inst Technol, Karlsruhe Nano Micro Facil, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[5] Karlsruhe Inst Technol, IAM, D-76344 Eggenstein Leopoldshafen, Germany
[6] TUD, Inst Mat Sci, KIT TUD Joint Res Lab Nanomat, Jovanka Bontschits Str 32, D-64287 Darmstadt, Germany
关键词
TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ROOM-TEMPERATURE; CUFE2O4; PARTICLES; COMPLEX; COBALT; METAL; FERROMAGNETISM; NANOPARTICLES;
D O I
10.1002/adfm.201603411
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The magnetoelectric effect, i.e., electric-field control of magnetism in artificial heterostructures is usually limited to surface/interface atoms of the magnetic materials. In order to attain electrical control of magnetism in bulk ferromagnets, this study proposes to extend the definition of magnetoelectric phenomena to include reversible, chemistry-controlled magnetization switching. A large and reversible change in the room temperature magnetization in strong ferromagnets is reported, with electrochemistry-driven Li-ion exchange; carefully chosen spinel ferrites demonstrate a reversible magnetization variation up to 50% for CuFe2O4 and 70% for ZnFe2O4. In case of CuFe2O4, the magnetization variation is predominantly associated with the preferential reduction of Cu2+ to Cu+ ions, and, hence, abides a nearly one-to-one relationship with the amount of injected Li-ions. In addition, the reduction of Cu2+ also annihilates the Fe3+-O-Cu2+ magnetic interaction, resulting in a marked decrease in the Neel temperature of CuFe2O4. In contrast, the electrical tuning of superexchange interactions is found to play the decisive role in ZnFe2O4, where the simple electrochemical reduction model of magnetic cations can only explain a nominal fraction of the total magnetization variation, and indeed an electrochemically controlled reversible change in transition temperature is found necessary to account for the large magnetization variation observed.
引用
收藏
页码:7507 / 7515
页数:9
相关论文
共 41 条
  • [1] [Anonymous], 1907, J. Phys. Theor. Appl, DOI [10.1051/jphystap:019070060066100, DOI 10.1051/JPHYSTAP:019070060066100]
  • [2] Antoshina LG, 1996, ZH EKSP TEOR FIZ+, V110, P2087
  • [3] Applications of microelectromagnetic traps
    Basore, Joseph R.
    Baker, Lane A.
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2012, 403 (08) : 2077 - 2088
  • [4] Bauer U, 2015, NAT MATER, V14, P174, DOI [10.1038/NMAT4134, 10.1038/nmat4134]
  • [5] Exchange constants and transfer integrals of spinel ferrites
    Bercoff, PG
    Bertorello, HR
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1997, 169 (03) : 314 - 322
  • [6] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [7] Two-Dimensional Manipulation of Magnetic Nanoparticles in Microfluidic Systems
    Cao, Quanliang
    Han, Xiaotao
    Li, Liang
    [J]. APPLIED PHYSICS EXPRESS, 2013, 6 (02)
  • [8] Nanoscale Magnetization Reversal Caused by Electric Field-Induced Ion Migration and Redistribution in Cobalt Ferrite Thin Films
    Chen, Xinxin
    Zhu, Xiaojian
    Xiao, Wen
    Liu, Gang
    Feng, Yuan Ping
    Ding, Jun
    Li, Run-Wei
    [J]. ACS NANO, 2015, 9 (04) : 4210 - 4218
  • [9] Chiba D, 2011, NAT MATER, V10, P853, DOI [10.1038/nmat3130, 10.1038/NMAT3130]
  • [10] Electrically Defined Ferromagnetic Nanodots
    Chiba, Daichi
    Matsukura, Fumihiro
    Ohno, Hideo
    [J]. NANO LETTERS, 2010, 10 (11) : 4505 - 4508