Heterostructured Ceria-Titania-Supported Platinum Catalysts for the Water Gas Shift Reaction

被引:27
作者
Lai, Xiao-Meng [1 ]
Xiao, Qi [1 ]
Ma, Chao [2 ]
Wang, Wei-Wei [1 ]
Jia, Chun-Jiang [1 ]
机构
[1] Shandong Univ, Key Lab Colloid & Interface Chem, Key Lab Special Aggregated Mat, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China
[2] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
ceria-titania; heterostructure; Pt catalyst; water gas shift reaction; metal-support interaction; GOLD CATALYSTS; CO OXIDATION; PARTICLE-SIZE; METAL-OXIDE; PT/TIO2; TEMPERATURE; COPPER; ADSORPTION; WGS; NANOPARTICLES;
D O I
10.1021/acsami.1c22795
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The water gas shift (WGS) reaction is a key process in the industrial hydrogen production and the development and application of the proton exchange membrane fuel cell. Metal oxide-supported highly dispersed Pt has been proved as an efficient catalyst for the WGS reaction. In this work, a series of supported 0.5Pt/xCe-10Ti (x = 1, 3, or 5) catalysts with different Ce/Ti molar ratios were prepared by a simple deposition-precipitation method. Compared with single TiO2- or CeO2-supported Pt catalysts, it was found that the 0.5Pt/3Ce-10Ti catalyst showed an obvious advantage in activity for the WGS reaction. In this catalyst, dispersed CeO2 nanoparticles were supported on the TiO2 sheets, and Pt single atoms and nanoparticles were located on CeO2 and at the boundary of TiO2 and CeO2, respectively. It found that the reduction ability of the supported Pt catalyst was remarkably improved; meanwhile, the adsorption strength of CO on the surface of 0.5Pt/3Ce-10Ti was moderate. The heterostructured CeO2-TiO2 support gave an effective regulation on the Pt status and further influenced the CO adsorption ability, inducing excellent WGS reaction activity. This work provides a reference for the development and application of heterostructured materials in heterogeneous catalysis.
引用
收藏
页码:8575 / 8586
页数:12
相关论文
共 67 条
[1]   Active Au Species During the Low-Temperature Water Gas Shift Reaction on Au/CeO2: A Time-Resolved Operando XAS and DRIFTS Study [J].
Abdel-Mageed, Ali M. ;
Kucerova, Gabriela ;
Bansmann, Joachim ;
Behm, R. Juergen .
ACS CATALYSIS, 2017, 7 (10) :6471-6484
[2]   Effect of Cu/CeO2 catalyst preparation methods on their characteristics for low temperature water - gas shift reaction: A detailed study [J].
Ahn, Seon-Yong ;
Na, Hyun-Suk ;
Jeon, Kyung-Won ;
Lee, Yeol-Lim ;
Kim, Kyoung-Jin ;
Shim, Jae-Oh ;
Roh, Hyun-Seog .
CATALYSIS TODAY, 2020, 352 :166-174
[3]   Effects of reduction temperature and metal-support interactions on the catalytic activity Pt/γ-Al2O3 and Pt/TiO2 for the oxidation of CO in the presence and absence of H2 [J].
Alexeev, OS ;
Chin, SY ;
Engelhard, MH ;
Ortiz-Soto, L ;
Amiridis, MD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (49) :23430-23443
[4]   Size Effects of Platinum Colloid Particles on the Structure and CO Oxidation Properties of Supported Pt/Fe2O3 Catalysts [J].
An, Nihong ;
Li, Suying ;
Duchesne, Paul N. ;
Wu, Ping ;
Zhang, Wenlong ;
Lee, Jyh-Fu ;
Cheng, Soofin ;
Zhang, Peng ;
Jia, Mingjun ;
Zhang, Wenxiang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (41) :21254-21262
[5]   FT-IR study of CO adsorption on Pt/CeO2:: characterisation and structural rearrangement of small Pt particles [J].
Bazin, P ;
Saur, O ;
Lavalley, JC ;
Daturi, M ;
Blanchard, G .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2005, 7 (01) :187-194
[6]   Catalysis by gold [J].
Bond, GC ;
Thompson, DT .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (3-4) :319-388
[7]   A New Type of Strong Metal-Support Interaction and the Production of H2 through the Transformation of Water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) Catalysts [J].
Bruix, Albert ;
Rodriguez, Jose A. ;
Ramirez, Pedro J. ;
Senanayake, Sanjaya D. ;
Evans, Jaime ;
Park, Joon B. ;
Stacchiola, Dario ;
Liu, Ping ;
Hrbek, Jan ;
Illas, Francesc .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (21) :8968-8974
[8]   Hydrogen Production via Water-Gas Shift Reaction by Cu/SiO2 Catalyst: A Case Study of CeO2 Doping [J].
Cai, Guohui ;
He, Yuanyuan ;
Ren, Hongju ;
Zhan, Yingying ;
Chen, Chongqi ;
Luo, Yu ;
Jiang, Lilong .
ENERGY & FUELS, 2021, 35 (04) :3521-3528
[9]   Ni-CeO2-ZrO2 Catalysts for Water Gas Shift Reaction: Effect of CeO2 Contents and Reduction Temperature [J].
Chamnankid, Busaya ;
Fottinger, Karin ;
Rupprechter, Gunther ;
Kongkachuichay, Paisan .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (12) :12904-12909
[10]   Structure of the catalytically active copper-ceria interfacial perimeter [J].
Chen, Aling ;
Yu, Xiaojuan ;
Zhou, Yan ;
Miao, Shu ;
Li, Yong ;
Kuld, Sebastian ;
Sehested, Jens ;
Liu, Jingyue ;
Aoki, Toshihiro ;
Hong, Song ;
Camellone, Matteo Farnesi ;
Fabris, Stefano ;
Ning, Jing ;
Jin, Chuanchuan ;
Yang, Chengwu ;
Nefedov, Alexei ;
Woell, Christof ;
Wang, Yuemin ;
Shen, Wenjie .
NATURE CATALYSIS, 2019, 2 (04) :334-341