A kernel-based method for pattern extraction in random process signals

被引:0
|
作者
Beigi, Majid M. [1 ]
Zell, Andreas [1 ]
机构
[1] Univ Tubingen, Dept Comp Sci, D-72076 Tubingen, Germany
关键词
time-resolved spectrum kernels; SVM; Fisher discriminant; mesh adaptive direct search;
D O I
10.1016/j.neucom.2007.11.028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many applications, one is interested to detect certain patterns in random process signals. We consider a class of random process signals which contain sub-similarities at random positions representing the texture of an object. Those repetitive parts may occur in speech, musical pieces and sonar signals. We suggest a warped time-resolved spectrum kernel for extracting the subsequence similarity in time series in general, and as an example in biosonar signals. Having a set of those kernels for similarity extraction in different size of subsequences, we propose a new method to find an optimal linear combination of those kernels. We formulate the optimal kernel selection via maximizing the kernel Fisher discriminant (KFD) criterion and use Mesh Adaptive Direct Search (MADS) method to solve the optimization problem. Our method is used for biosonar landmark classification with promising results. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1238 / 1247
页数:10
相关论文
共 50 条
  • [31] An intensive case study on kernel-based relation extraction
    Choi, Sung-Pil
    Lee, Seungwoo
    Jung, Hanmin
    Song, Sa-kwang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 71 (02) : 741 - 767
  • [32] Kernel-based feature extraction with a speech technology application
    Kocsor, A
    Tóth, L
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (08) : 2250 - 2263
  • [33] Fast Kernel-based Method for Anomaly Detection
    Anh Le
    Trung Le
    Khanh Nguyen
    Van Nguyen
    Thai Hoang Le
    Dat Tran
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3211 - 3217
  • [34] Kernel-based gradient evolution optimization method
    Flor-Sanchez, Carlos O.
    Resendiz-Flores, Edgar O.
    Altamirano-Guerrero, Gerardo
    INFORMATION SCIENCES, 2022, 602 : 313 - 327
  • [35] Linux kernel-based traffic analysis method
    Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China
    Jisuanji Gongcheng, 2006, 8 (67-69):
  • [36] Kernel-based multimodal biometric verification using quality signals
    Fierrez-Aguilar, J
    Ortega-Garcia, J
    Gonzalez-Rodriguez, J
    Bigun, J
    BIOMETRIC TECHNOLOGY FOR HUMAN IDENTIFICATION, 2004, 5404 : 544 - 554
  • [37] A Kernel-Based Core Growing Clustering Method
    Hsieh, T. W.
    Taur, J. S.
    Tao, C. W.
    Kung, S. Y.
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (04) : 441 - 458
  • [38] Kernel-based gradient evolution optimization method
    Flor-Sánchez, Carlos O.
    Reséndiz-Flores, Edgar O.
    Altamirano-Guerrero, Gerardo
    Information Sciences, 2022, 602 : 313 - 327
  • [39] Damage diagnosis using a kernel-based method
    Chattopadhyay, A.
    Das, S.
    Coelho, C. K.
    INSIGHT, 2007, 49 (08) : 451 - 458
  • [40] A kernel-based method for nonparametric estimation of variograms
    Yu, Keming
    Mateu, Jorge
    Porcu, Emilio
    STATISTICA NEERLANDICA, 2007, 61 (02) : 173 - 197