Spatially Constrained Organic Diquat Anolyte for Stable Aqueous Flow Batteries

被引:63
作者
Huang, Jinhua [1 ,2 ]
Yang, Zheng [1 ,3 ]
Murugesan, Vijayakumar [1 ,3 ]
Walter, Eric [3 ]
Hollas, Aaron [3 ]
Pan, Baofei [1 ,2 ]
Assary, Rajeev S. [1 ,2 ]
Shkrob, Ilya A. [1 ,2 ]
Wei, Xiaoliang [1 ,3 ,4 ]
Zhang, Zhengcheng [1 ,2 ]
机构
[1] JCESR, Argonne, IL 60439 USA
[2] Argonne Natl Lab, 9700 Cass Ave, Lemont, IL 60439 USA
[3] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA
[4] IUPUI, 723 W Michigan St, Indianapolis, IN 46202 USA
关键词
ELECTRICAL ENERGY-STORAGE; RESEARCH-AND-DEVELOPMENT; METHYL VIOLOGEN; PULSE-RADIOLYSIS; CATION; ESR; DICATIONS; EXCHANGE; PROGRESS;
D O I
10.1021/acsenergylett.8b01550
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Redox-active organic materials (ROMs) are becoming increasingly attractive for use in redox flow batteries as promising alternatives to traditional inorganic counterparts. However, the reported ROMs are often accompanied by challenges, including poor solubility and stability. Herein, we demonstrate that the commonly used diquat herbicides, with solubilities of >2 M in aqueous electrolytes, can be used as stable anolyte materials in organic flow batteries. When coupled with a ferrocene-derived catholyte, the flow cells with the diquat anolyte demonstrate long galvanic cycling with high capacity retention. Notably, the mechanistic underpinnings of this remarkable stability are attributed to the improved pi-conjugation that originated from the near-planar molecular conformations of the spatially constrained 2,2'-bipyridyl rings, suggesting a viable structural engineering strategy for designing stable organic materials.
引用
收藏
页码:2533 / 2538
页数:11
相关论文
共 34 条
[11]   Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage [J].
Hu, Bo ;
DeBruler, Camden ;
Rhodes, Zayn ;
Liu, T. Leo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (03) :1207-1214
[12]   A metal-free organic-inorganic aqueous flow battery [J].
Huskinson, Brian ;
Marshak, Michael P. ;
Suh, Changwon ;
Er, Sueleyman ;
Gerhardt, Michael R. ;
Galvin, Cooper J. ;
Chen, Xudong ;
Aspuru-Guzik, Alan ;
Gordon, Roy G. ;
Aziz, Michael J. .
NATURE, 2014, 505 (7482) :195-+
[13]   An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System [J].
Janoschka, Tobias ;
Martin, Norbert ;
Hager, Martin D. ;
Schubert, Ulrich S. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (46) :14425-14428
[14]   Recent developments in organic redox flow batteries: A critical review [J].
Leung, P. ;
Shah, A. A. ;
Sanz, L. ;
Flox, C. ;
Morante, J. R. ;
Xu, Q. ;
Mohamed, M. R. ;
de Leon, C. Ponce ;
Walsh, F. C. .
JOURNAL OF POWER SOURCES, 2017, 360 :243-283
[15]  
Lin KX, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.102, 10.1038/NENERGY.2016.102]
[16]   Alkaline quinone flow battery [J].
Lin, Kaixiang ;
Chen, Qing ;
Gerhardt, Michael R. ;
Tong, Liuchuan ;
Kim, Sang Bok ;
Eisenach, Louise ;
Valle, Alvaro W. ;
Hardee, David ;
Gordon, Roy G. ;
Aziz, Michael J. ;
Marshak, Michael P. .
SCIENCE, 2015, 349 (6255) :1529-1532
[17]   A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte [J].
Liu, Tianbiao ;
Wei, Xiaoliang ;
Nie, Zimin ;
Sprenkle, Vincent ;
Wang, Wei .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)
[18]   The Chemistry of Redox-Flow Batteries [J].
Noack, Jens ;
Roznyatovskaya, Nataliya ;
Herr, Tatjana ;
Fischer, Peter .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (34) :9775-9808
[19]   A biomimetic redox flow battery based on flavin mononucleotide [J].
Orita, Akihiro ;
Verde, Michael G. ;
Sakai, Masanori ;
Meng, Ying Shirley .
NATURE COMMUNICATIONS, 2016, 7
[20]   Material design and engineering of next-generation flow-battery technologies [J].
Park, Minjoon ;
Ryu, Jaechan ;
Wang, Wei ;
Cho, Jaephil .
NATURE REVIEWS MATERIALS, 2017, 2 (01)