Optimal control of crystallization processes

被引:3
|
作者
Goetz, Thomas
Pinnau, Rene
机构
[1] Univ Kaiserslautern, Dept Math, D-67663 Kaiserslautern, Germany
[2] Univ Hamburg, Dept Math, D-20146 Hamburg, Germany
关键词
crystallization; optimal control; numerics;
D O I
10.1142/S0218202506001807
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an optimal control problem for polymer crystallization is investigated. The crystallization is described by a non-isothermal Avrami-Kolmogorov model and the temperature at the boundary of the domain serves as control variable. The cost functional takes into account the spatial variation of the crystallinity and the final degree of crystallization. This results in a boundary control problem for a parabolic equation coupled with two ordinary differential equations, which is treated by an adjoint variable approach. We prove the existence and uniqueness of solutions to the state system as well as the existence of a minimizer for the cost functional under consideration. The adjoint system is derived and we use a steepest descent algorithm to solve the problem numerically. Numerical simulations illustrate the applicability and performance of the optimization algorithm.
引用
收藏
页码:2029 / 2045
页数:17
相关论文
共 50 条
  • [41] OPTIMAL CONTROL OF LEACHATE RECIRCULATION FOR ANAEROBIC PROCESSES IN LANDFILLS
    Bisi, Marzia
    Groppi, Maria
    Martalo, Giorgio
    Travaglini, Romina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (06): : 2957 - 2976
  • [42] Optimal control of thermal and wave processes in composite materials
    Zhabko, A. P.
    Karelin, V. V.
    Provotorov, V. V.
    Sergeev, S. M.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2023, 19 (03): : 403 - 418
  • [43] Optimal control in light traffic Markov decision processes
    Koole, G
    Passchier, O
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1997, 45 (01) : 63 - 79
  • [44] MATHEMATICAL MODELS AND OPTIMAL CONTROL OF THE FILTRATION AND DEFORMATION PROCESSES
    Manakova, N. A.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2015, 8 (03): : 5 - 24
  • [45] Mathematical modeling and optimal control strategy development for batch crystallization process
    Niu, Lin
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 243 - 246
  • [46] Optimal Control of Production Processes with Variable Execution Times
    Giglio, Davide
    Minciardi, Riccardo
    Sacone, Simona
    Siri, Silvia
    DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 2009, 19 (03): : 423 - 448
  • [47] Numerical methods and optimal control for glass cooling processes
    Thömmes, G
    Pinnau, R
    Seaïd, M
    Götz, T
    Klar, A
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2002, 31 (4-6): : 513 - 529
  • [48] Optimal control in light traffic Markov decision processes
    Ger Koole
    Olaf Passchier
    Mathematical Methods of Operations Research, 1997, 45 : 63 - 79
  • [49] Optimal Control of Production Processes with Variable Execution Times
    Davide Giglio
    Riccardo Minciardi
    Simona Sacone
    Silvia Siri
    Discrete Event Dynamic Systems, 2009, 19 : 423 - 448
  • [50] A model-based control framework for industrial batch crystallization processes
    Mesbah, A.
    Landlust, J.
    Huesman, A. E. M.
    Kramer, H. J. M.
    Jansens, P. J.
    Van den Hof, P. M. J.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2010, 88 (9A) : 1223 - 1233