Optimal control of crystallization processes

被引:3
|
作者
Goetz, Thomas
Pinnau, Rene
机构
[1] Univ Kaiserslautern, Dept Math, D-67663 Kaiserslautern, Germany
[2] Univ Hamburg, Dept Math, D-20146 Hamburg, Germany
关键词
crystallization; optimal control; numerics;
D O I
10.1142/S0218202506001807
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an optimal control problem for polymer crystallization is investigated. The crystallization is described by a non-isothermal Avrami-Kolmogorov model and the temperature at the boundary of the domain serves as control variable. The cost functional takes into account the spatial variation of the crystallinity and the final degree of crystallization. This results in a boundary control problem for a parabolic equation coupled with two ordinary differential equations, which is treated by an adjoint variable approach. We prove the existence and uniqueness of solutions to the state system as well as the existence of a minimizer for the cost functional under consideration. The adjoint system is derived and we use a steepest descent algorithm to solve the problem numerically. Numerical simulations illustrate the applicability and performance of the optimization algorithm.
引用
收藏
页码:2029 / 2045
页数:17
相关论文
共 50 条
  • [21] On the optimal control of contact-cooking processes
    Banga, JR
    Pan, Z
    Singh, RP
    FOOD AND BIOPRODUCTS PROCESSING, 2001, 79 (C3) : 145 - 151
  • [22] Optimal Control with Sweeping Processes: Numerical Method
    MdR de Pinho
    M. M. A. Ferreira
    G. Smirnov
    Journal of Optimization Theory and Applications, 2020, 185 : 845 - 858
  • [23] Scheduling of refinery processes with optimal control approach
    Park, H
    Bok, JK
    Park, S
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2001, 34 (03) : 411 - 422
  • [24] Optimal control of melt-spinning processes
    T. Götz
    S. S. N. Perera
    Journal of Engineering Mathematics, 2010, 67 : 153 - 163
  • [25] A hybrid method for the optimal control of chemical processes
    Carrasco, EF
    Banga, JR
    UKACC INTERNATIONAL CONFERENCE ON CONTROL '98, VOLS I&II, 1998, : 925 - 930
  • [26] Optimal control of melt-spinning processes
    Goetz, T.
    Perera, S. S. N.
    JOURNAL OF ENGINEERING MATHEMATICS, 2010, 67 (03) : 153 - 163
  • [27] ANALYSIS AND OPTIMAL CONTROL OF SOME SOLIDIFICATION PROCESSES
    Cabrales, Roberto C.
    Camacho, Gema
    Fernandez-Cara, Enrique
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (10) : 3985 - 4017
  • [28] Optimal control of wave linear repetitive processes
    Dymkov, Michael
    Rogers, Eric
    Galkowski, Krzysztof
    Dymkou, Siarhei
    SYSTEMS & CONTROL LETTERS, 2008, 57 (11) : 940 - 945
  • [29] Optimal Control of Crystal Size and Shape in Batch Crystallization Using a Bivariate Population Balance Modeling
    de Moraes, Marcellus G. F.
    Grover, Martha A.
    de Souza Jr, Mauricio B.
    Lage, Paulo L. C.
    Secchi, Argimiro R.
    IFAC PAPERSONLINE, 2021, 54 (03): : 653 - 660
  • [30] Stabilizing control of crystal size distribution in continuous crystallization processes
    Naito, K
    Sotowa, K
    Kano, M
    Hasebe, S
    Hashimoto, I
    KAGAKU KOGAKU RONBUNSHU, 1998, 24 (02) : 318 - 323