Central Limit Theorems for Open Quantum Random Walks on the Crystal Lattices

被引:5
作者
Ko, Chul Ki [1 ]
Konno, Norio [2 ]
Segawa, Etsuo [3 ]
Yoo, Hyun Jae [4 ,5 ]
机构
[1] Yonsei Univ, Univ Coll, 85 Songdogwahak Ro, Incheon 21983, South Korea
[2] Yokohama Natl Univ, Fac Engn, Dept Appl Math, Yokohama, Kanagawa 2408501, Japan
[3] Tohoku Univ, Grad Sch Informat Sci, 6-3-09 Aramaki Aza, Sendai, Miyagi 9808579, Japan
[4] Hankyong Natl Univ, Dept Appl Math, 327 Jungang Ro, Anseong 17579, Gyeonggi Do, South Korea
[5] Hankyong Natl Univ, Inst Integrated Math Sci, 327 Jungang Ro, Anseong 17579, Gyeonggi Do, South Korea
基金
日本学术振兴会;
关键词
Open quantum random walks; Crystal lattices; Central limit theorem; Dual processes;
D O I
10.1007/s10955-019-02318-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the open quantum random walks on the crystal lattices and investigate the central limit theorems for the walks. On the integer lattices the open quantum random walks satisfy the central limit theorems as was shown by Attal et al (Ann Henri Poincare 16(1):15-43, 2015). In this paper we prove the central limit theorems for the open quantum random walks on the crystal lattices. We then provide with some examples for the Hexagonal lattices. We also develop the Fourier analysis on the crystal lattices. This leads to construct the so called dual processes for the open quantum random walks. It amounts to get Fourier transform of the probability densities, and it is very useful when we compute the characteristic functions of the walks. In this paper we construct the dual processes for the open quantum random walks on the crystal lattices providing with some examples.
引用
收藏
页码:710 / 735
页数:26
相关论文
共 18 条
[11]   How does Grover walk recognize the shape of crystal lattice? [J].
Ko, Chul Ki ;
Konno, Norio ;
Segawa, Etsuo ;
Yoo, Hyun Jae .
QUANTUM INFORMATION PROCESSING, 2018, 17 (07)
[13]   Limit Theorems for Open Quantum Random Walks [J].
Konno, Norio ;
Yoo, Hyun Jae .
JOURNAL OF STATISTICAL PHYSICS, 2013, 150 (02) :299-319
[14]   Quantum Random Walks in One Dimension [J].
Konno, Norio .
QUANTUM INFORMATION PROCESSING, 2002, 1 (05) :345-354
[15]   A pathwise ergodic theorem for quantum trajectories [J].
Kümmerer, B ;
Maassen, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (49) :11889-11896
[16]   Central limit theorem for reducible and irreducible open quantum walks [J].
Sadowski, Przemyslaw ;
Pawela, Lukasz .
QUANTUM INFORMATION PROCESSING, 2016, 15 (07) :2725-2743
[17]  
Sunada T., 2013, SURVEYS TUTORIALS AP
[18]   Quantum speed-up of Markov chain based algorithms [J].
Szegedy, M .
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, :32-41