Hybrid Sol-Gel Combustion Synthesis of Nanoporous Anatase

被引:18
作者
Mukherjee, B. [1 ]
Karthik, C. [1 ,2 ]
Ravishankar, N. [1 ,2 ]
机构
[1] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India
[2] Rensselaer Polytech Inst, Troy, NY USA
关键词
TIO2; FILMS; TITANIUM-DIOXIDE; NANOCRYSTALLINE TIO2; DOPED TIO2; PHOTOINDUCED HYDROPHILICITY; PHOTOCATALYTIC ACTIVITY; ELECTROCHROMIC WINDOWS; TEMPERATURE SYNTHESIS; PHASE-TRANSFORMATION; ELECTRON-TRANSPORT;
D O I
10.1021/jp904563m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanoporous anatase with a thin interconnected filmlike morphology has been synthesized in a single step by coupling a nonhydrolytic condensation reaction of a Ti precursor with a hybrid sol-gel combustion reaction. The method combines the advantages of a conventional sol-gel method for the formation of porous structures with the high crystallinity of the products obtained by combustion methods to yield highly crystalline, phase-pure nanoporous anatase. The generation of pores is initiated by the formation of reverse micelles in a polymeric polycondensation product, which expand during heating, leading to larger pores. A reaction scheme involving a complex formation and nonhydrolytic polycondensation reaction with ester elimination leads to the formation of ail extended Ti-O-Ti network. The effect of process parameters, such as temperature and relative ratio of cosurfactants, on phase formation has been studied. The possibility of band gap engineering by controlled doping during synthesis and the possibility of attachment of molecular/nanoparticle sensitizers provide opportunities for easy preparation of photoanodes for solar cell applications.
引用
收藏
页码:18204 / 18211
页数:8
相关论文
共 65 条
[1]   A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator [J].
Abe, R ;
Sayama, K ;
Domen, K ;
Arakawa, H .
CHEMICAL PHYSICS LETTERS, 2001, 344 (3-4) :339-344
[2]   Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol-gel methods [J].
Arnal, P ;
Corriu, RJP ;
Leclercq, D ;
Mutin, PH ;
Vioux, A .
JOURNAL OF MATERIALS CHEMISTRY, 1996, 6 (12) :1925-1932
[3]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[4]  
Benkstein KD, 2003, J PHYS CHEM B, V107, P7759, DOI 10.1021/jp0226811
[5]   IR-analysis of H-bonded H2O on the pure TiO2 surface [J].
Bezrodna, T ;
Puchkovska, G ;
Shymanovska, V ;
Baran, J ;
Ratajczak, H .
JOURNAL OF MOLECULAR STRUCTURE, 2004, 700 (1-3) :175-181
[6]   Pyridine-TiO2 surface interaction as a probe for surface active centers analysis [J].
Bezrodna, T ;
Puchkovska, G ;
Shimanovska, V ;
Chashechnikova, I ;
Khalyavka, T ;
Baran, J .
APPLIED SURFACE SCIENCE, 2003, 214 (1-4) :222-231
[7]   Enhanced nitrogen doping in TiO2 nanoparticles [J].
Burda, C ;
Lou, YB ;
Chen, XB ;
Samia, ACS ;
Stout, J ;
Gole, JL .
NANO LETTERS, 2003, 3 (08) :1049-1051
[8]   Ester elimination: A general solvent dependent non-hydrolytic route to metal and mixed-metal oxides [J].
Caruso, J ;
HampdenSmith, MJ .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 1997, 8 (1-3) :35-39
[9]   X-ray spectroscopic study of the electronic structure of visible-light responsive N-, C- and S-doped TiO2 [J].
Chen, Xiaobo ;
Glans, Per-Anders ;
Qiu, Xiaofeng ;
Dayal, Smita ;
Jennings, Wayne D. ;
Smith, Kevin E. ;
Burda, Clemens ;
Guo, Jinghua .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2008, 162 (02) :67-73
[10]   Coloured electrochromic windows based on nanostructured TiO2 films modified by adsorbed redox chromophores [J].
Cinnsealach, R ;
Boschloo, G ;
Rao, SN ;
Fitzmaurice, D .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1999, 57 (02) :107-125