Camouflage: Memory Traffic Shaping to Mitigate Timing Attacks

被引:25
作者
Zhou, Yanqi [1 ]
Wagh, Sameer [1 ]
Mittal, Prateek [1 ]
Wentzlaff, David [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
来源
2017 23RD IEEE INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER ARCHITECTURE (HPCA) | 2017年
基金
美国国家科学基金会;
关键词
hardware; security; memory system; INFORMATION; PRIVACY;
D O I
10.1109/HPCA.2017.36
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Information leaks based on timing side channels in computing devices have serious consequences for user security and privacy. In particular, malicious applications in multi-user systems such as data centers and cloud-computing environments can exploit memory timing as a side channel to infer a victim's program access patterns/phases. Memory timing channels can also be exploited for covert communications by an adversary. We propose Camouflage, a hardware solution to mitigate timing channel attacks not only in the memory system, but also along the path to and from the memory system (e.g. NoC, memory scheduler queues). Camouflage introduces the novel idea of shaping memory requests' and responses' inter-arrival time into a pre-determined distribution for security purposes, even creating additional fake traffic if needed. This limits untrusted parties (either cloud providers or co-scheduled clients) from inferring information from another security domain by probing the bus to and from memory, or analyzing memory response rate. We design three different memory traffic shaping mechanisms for different security scenarios by having Camouflage work on requests, responses, and bi-directional (both) traffic. Camouflage is complementary to ORAMs and can be optionally used in conjunction with ORAMs to protect information leaks via both memory access timing and memory access patterns. Camouflage offers a tunable trade-off between system security and system performance. We evaluate Camouflage's security and performance both theoretically and via simulations, and find that Camouflage outperforms state-of-the-art solutions in performance by up to 50%.
引用
收藏
页码:337 / 348
页数:12
相关论文
共 37 条
[1]  
Aciicmez O., 2006, Topics in Cryptology-CT-RSA 2007. The Cryptographers' Track at the RAS Conference 2007. Proceedings (Lecture Notes in Computer Science Vol.4377), P225
[2]  
Aciiçmez O, 2007, CSAW'07: PROCEEDINGS OF THE 2007 ACM COMPUTER SECURITY ARCHITECTURE WORKSHOP, P11
[3]  
[Anonymous], 2006, INT SAF COMP IN BULD
[4]  
[Anonymous], 1977, Information Theory with Applications
[5]  
[Anonymous], 2003, International conference on Supercomputing, ICS '03
[6]  
[Anonymous], ISCA
[7]   OpenPiton: An Open Source Manycore Research Framework [J].
Balkind, Jonathan ;
McKeown, Michael ;
Fu, Yaosheng ;
Tri Nguyen ;
Zhou, Yanqi ;
Lavrov, Alexey ;
Shahrad, Mohammad ;
Fuchs, Adi ;
Payne, Samuel ;
Liang, Xiaohua ;
Matl, Matthew ;
Wentzlaff, David .
ACM SIGPLAN NOTICES, 2016, 51 (04) :217-232
[8]  
Binkert Nathan, 2011, Computer Architecture News, V39, P1, DOI 10.1145/2024716.2024718
[9]  
CHEN J, 2014, MICRO, P216
[10]  
Cuff P., 2016, CORR