Temperature and deformation effect on the low and high angle grain boundary structure of a double forged pure tungsten

被引:24
|
作者
Sheng, Hua [1 ,2 ]
Sun, Zhi [3 ]
Uytdenhouwen, Inge [1 ]
Van Oost, Guido [2 ]
Vleugels, Jozef [3 ]
机构
[1] Belgian Nucl Res Ctr, SCK CEN, B-2400 Mol, Belgium
[2] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
[3] Katholieke Univ Leuven, Dept Mat Engn, B-3001 Heverlee, Belgium
关键词
Nuclear fusion; Tungsten; EBSD; Subgrain; RECRYSTALLIZATION; GROWTH; ITER;
D O I
10.1016/j.ijrmhm.2015.01.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to improve the performance of tungsten, a basic understanding of the microstructure-property relationships is essential. In the present study, a newly developed double forged pure tungsten grade from Plansee SE was investigated. By analysing the mechanical properties and microstructures in well-defined directions in the double forged tungsten, their relationships could be successfully correlated. A large amount of sub-grains with a typical size below 5 pm were observed in the as-received double-forged tungsten. After thermally treating the double forged tungsten up to 2000 degrees C, microstructural recovery was observed with the onset of recrystallization. Meanwhile, the sub-grain misorientation angle increased accompanied by sub-grain growth. The deformation temperature and the strain rate considerably influenced the final microstructure. The higher the temperature, the lower the amount of sub-grain boundaries due to sub-grain coarsening and the clearer the grain boundaries. The higher the deformation strain rate during tensile testing, the higher the grain orientation spread and the larger the sub-grain misorientation, but the smaller the grain size due to a lower extent of crystallization. This matched well with the mechanical testing data. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:184 / 190
页数:7
相关论文
共 42 条
  • [41] Effect of plastic deformation on the electrophysical properties and structure of YBa2Cu3O y ceramics subjected to low-temperature treatment
    Bobylev, I. B.
    Zyuzeva, N. A.
    Degtyarev, M. V.
    Pilyugin, V. P.
    PHYSICS OF METALS AND METALLOGRAPHY, 2015, 116 (12) : 1213 - 1220
  • [42] Dislocation structure at a {(1)over-bar2(1)over-bar0}/⟨10(1)over-bar0⟩ low-angle tilt grain boundary in LiNbO3
    Nakamura, Atsutomo
    Tochigi, Eita
    Nakamura, Jun-nosuke
    Kishida, Ippei
    Yokogawa, Yoshiyuki
    JOURNAL OF MATERIALS SCIENCE, 2012, 47 (13) : 5086 - 5096