Liquid injection atomic layer deposition of silver nanoparticles

被引:46
作者
Chalker, P. R. [1 ]
Romani, S. [1 ]
Marshall, P. A. [1 ]
Rosseinsky, M. J. [2 ]
Rushworth, S. [3 ]
Williams, P. A. [3 ]
机构
[1] Univ Liverpool, Dept Mat Sci & Engn, Liverpool L69 3GH, Merseyside, England
[2] Univ Liverpool, Dept Chem, Liverpool L69 7ZD, Merseyside, England
[3] SAFC Hitech, Wirral CH62 3QF, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
CHEMICAL-VAPOR-DEPOSITION; OPTICAL-PROPERTIES; SURFACE-PLASMONS; PRECURSORS; ELECTRODE; GROWTH; FILMS;
D O I
10.1088/0957-4484/21/40/405602
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silver nanoparticles are being developed for applications in plasmonics, catalysts and analytical methods, amongst others. Herein, we demonstrate the growth of silver nanoparticles using an atomic layer deposition (ALD) process for the first time. The silver was deposited from pulses of the organometallic precursor (hfac) Ag(1,5-COD) ((hexafluoroacetylacetonato)silver(I) (1,5-cyclooctadiene)) dissolved in a 0.1 M toluene solution. Catalytic oxidative dehydrogenation of the silver was achieved using intermittent pulses of propanol. The effect of substrate temperature on the size and distribution of nanoparticles has been investigated over the temperature range 110-150 degrees C. Transmission electron microscopy reveals that the nanoparticles consist of face centred cubic, facetted silver crystallites. The localized surface plasmon modes of the nanoparticles have been investigated using electron energy loss spectroscopy mapping. The distributions of plasmons within the ALD nanoparticles are comparable to those grown by solution methods. Both dipolar and quadrupolar resonant modes are observed, which is consistent with previous discrete dipole approximation models. Energy loss mapping of a loss feature at 8.1 eV reveals that it correlates with the bulk or volume region of the silver nanoparticles investigated here.
引用
收藏
页数:7
相关论文
共 23 条
[1]  
ABE H, 1995, J ELECTRON MICROSC, V44, P45
[2]   Theoretical analysis of the momentum-dependent loss function of bulk Ag [J].
Alkauskas, A. ;
Schneider, S. D. ;
Sagmeister, S. ;
Ambrosch-Draxl, C. ;
Hebert, C. .
ULTRAMICROSCOPY, 2010, 110 (08) :1081-1086
[3]   Alcohol-assisted CVD of silver using commercially available precursors [J].
Bahlawane, Naoufal ;
Premkumar, Peter Antony ;
Brechling, Armin ;
Reiss, Guenter ;
Kohse-Hoeinghaus, Katharina .
CHEMICAL VAPOR DEPOSITION, 2007, 13 (08) :401-407
[4]   Spatially-resolved EEL studies of plasmons in silver filled carbon nanotubes using a dedicated STEM [J].
Bangert, U. ;
Harvey, A. J. ;
Seepujak, A. .
EMAG: ELECTRON MICROSCOPY AND ANALYSIS GROUP CONFERENCE 2007, 2008, 126
[5]   The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering [J].
Cade, N. I. ;
Ritman-Meer, T. ;
Kwakwa, K. A. ;
Richards, D. .
NANOTECHNOLOGY, 2009, 20 (28)
[6]   Controlled Growth of Platinum Nanoparticles on Strontium Titanate Nanocubes by Atomic Layer Deposition [J].
Christensen, Steven T. ;
Elam, Jeffrey W. ;
Rabuffetti, Federico A. ;
Ma, Qing ;
Weigand, Steven J. ;
Lee, Byeongdu ;
Seifert, Soenke ;
Stair, Peter C. ;
Poeppelmeier, Kenneth R. ;
Hersam, Mark C. ;
Bedzyk, Michael J. .
SMALL, 2009, 5 (06) :750-757
[7]   Supported gold nanoparticles as catalysts for organic reactions [J].
Corma, Avelino ;
Garcia, Hermenegildo .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (09) :2096-2126
[8]   RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE [J].
FLEISCHMANN, M ;
HENDRA, PJ ;
MCQUILLAN, AJ .
CHEMICAL PHYSICS LETTERS, 1974, 26 (02) :163-166
[9]   Silver metal organic chemical vapor deposition for advanced silver metallization [J].
Gao, L ;
Härter, P ;
Linsmeier, C ;
Wiltner, A ;
Emling, R ;
Schmitt-Landsiedel, D .
MICROELECTRONIC ENGINEERING, 2005, 82 (3-4) :296-300
[10]   SURFACE RAMAN SPECTROELECTROCHEMISTRY .1. HETEROCYCLIC, AROMATIC, AND ALIPHATIC-AMINES ADSORBED ON ANODIZED SILVER ELECTRODE [J].
JEANMAIRE, DL ;
VANDUYNE, RP .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1977, 84 (01) :1-20