Studying a Cell Division Amidase Using Defined Peptidoglycan Substrates

被引:23
|
作者
Lupoli, Tania J. [2 ]
Taniguchi, Tohru [2 ]
Wang, Tsung-Shing [2 ]
Perlstein, Deborah L. [1 ]
Walker, Suzanne [1 ]
Kahne, Daniel E. [2 ,3 ]
机构
[1] Harvard Univ, Sch Med, Dept Microbiol & Mol Genet, Boston, MA 02115 USA
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[3] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
L-ALANINE AMIDASE; MUTATIONAL ANALYSIS; SEPARATION; MEMBRANE; ASSAY;
D O I
10.1021/ja908916z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Three periplasmic N-acetylmuramoyl-L-alanine amidases are critical for hydrolysis of septal, peptidoglycan, which enables cell separation. The amidases cleave the amide bond between the lactyl group of muramic acid and the amino group of L-alanine to release a peptide moiety. Cell division amidases remain largely uncharacterized because substrates suitable for studying them have not been available. Here we have used synthetic peptidoglycan fragments of defined composition to characterize the catalytic activity and substrate specificity of the important Escherichia coli cell division amidase AmiA. We show that AmiA is a zinc metalloprotease that requires at least a tetrasaccharide glycopeptide substrate for cleavage. The approach outlined here can be applied to many other cell wall hydrolases and should enable more detailed studies of accessory proteins proposed to regulate amidase activity in cells.
引用
收藏
页码:18230 / +
页数:3
相关论文
共 50 条
  • [1] Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan
    Do, Truc
    Schaefer, Kaitlin
    Santiago, Ace George
    Coe, Kathryn A.
    Fernandes, Pedro B.
    Kahne, Daniel
    Pinho, Mariana G.
    Walker, Suzanne
    NATURE MICROBIOLOGY, 2020, 5 (02) : 291 - +
  • [2] Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan
    Truc Do
    Kaitlin Schaefer
    Ace George Santiago
    Kathryn A. Coe
    Pedro B. Fernandes
    Daniel Kahne
    Mariana G. Pinho
    Suzanne Walker
    Nature Microbiology, 2020, 5 : 291 - 303
  • [3] The crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain
    Rocaboy, Mathieu
    Herman, Raphael
    Sauvage, Eric
    Remaut, Han
    Moonens, Kristof
    Terrak, Mohammed
    Charlier, Paulette
    Kerff, Frederic
    MOLECULAR MICROBIOLOGY, 2013, 90 (02) : 267 - 277
  • [4] Tat-exported peptidoglycan amidase-dependent cell division contributes to Salmonella Typhimurium fitness in the inflamed gut
    Fujimoto, Mayuka
    Goto, Ryosuke
    Hirota, Riku
    Ito, Masahiro
    Haneda, Takeshi
    Okada, Nobuhiko
    Miki, Tsuyoshi
    PLOS PATHOGENS, 2018, 14 (10)
  • [5] Cell Division: Pulling Apart Peptidoglycan
    Goodman C.
    Nature Chemical Biology, 2011, 7 (12) : 857 - 857
  • [6] A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis
    Boutte, Cara C.
    Baer, Christina E.
    Papavinasasundaram, Kadamba
    Liu, Weiru
    Chase, Michael R.
    Meniche, Xavier
    Fortune, Sarah M.
    Sassetti, Christopher M.
    Ioerger, Thomas R.
    Rubin, Eric J.
    ELIFE, 2016, 5
  • [7] Studying bacterial cell division using optical tweezers
    Verhoeven, Gertjan
    Dogterom, Marileen
    Alexeeva, Svetlana
    den Blaauwen, Tanneke
    BIOPHYSICAL JOURNAL, 2007, : 306A - 306A
  • [8] Studying cell division by RNAi
    Hao J.
    Genome Biology, 2 (3)
  • [9] Thioester analogues of peptidoglycan fragment MurNAc-L-Ala-γ-D-Glu as substrates for peptidoglycan hydrolase MurNAc-L-Ala amidase
    Harding, RL
    Henshaw, J
    Tilling, J
    Bugg, TDH
    JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1, 2002, (14): : 1714 - 1722
  • [10] Cell division is antagonized by the activity of peptidoglycan endopeptidases that promote cell elongation
    Truong, Thao T.
    Vettiger, Andrea
    Bernhardt, Thomas G.
    MOLECULAR MICROBIOLOGY, 2020, 114 (06) : 966 - 978