Respiratory Motion Estimation from Cone-Beam Projections Using a Prior Model

被引:0
作者
Vandemeulebroucke, Jef [1 ,2 ,3 ]
Kybic, Jan [3 ]
Clarysse, Patrick [1 ]
Sarrut, David [1 ,2 ]
机构
[1] Univ Lyon, CREATIS LRMN, Lyon, France
[2] Univ Lyon, Leon Berard Cancer Ctr, F-69373 Lyon, France
[3] Prague Agr Univ, Ctr Machine Percept, Prague, Czech Republic
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT II, PROCEEDINGS | 2009年 / 5762卷
关键词
LUNG; CT; RADIOTHERAPY; REGISTRATION; VARIABILITY;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Respiratory motion introduces uncertainties when planning and delivering radiotherapy for lung cancer patients. Cone-beam projections acquired in the treatment room could provide valuable information for building motion models, useful for gated treatment delivery or motion compensated reconstruction. We propose a method for estimating 3D+T respiratory motion from the 2D+T cone-beam projection sequence by including prior knowledge about the patient's breathing motion. Motion estimation is accomplished by maximizing the similarity of the projected view of a patient specific model to observed projections of the cone-beam sequence. This is done semi-globally, considering entire breathing cycles. Using realistic patient data, we show that the method is capable of good prediction of the internal patient motion from cone-beam data, even when confronted with interfractional changes in the breathing motion.
引用
收藏
页码:365 / +
页数:2
相关论文
共 50 条
  • [1] On-the-fly motion-compensated cone-beam CT using an a priori model of the respiratory motion
    Rit, Simon
    Wolthaus, Jochem W. H.
    van Herk, Marcel
    Sonke, Jan-Jakob
    MEDICAL PHYSICS, 2009, 36 (06) : 2283 - 2296
  • [2] Correction of motion artifacts in cone-beam CT using a patient-specific respiratory motion model
    Zhang, Qinghui
    Hu, Yu-Chi
    Liu, Fenghong
    Goodman, Karyn
    Rosenzweig, Kenneth E.
    Mageras, Gig S.
    MEDICAL PHYSICS, 2010, 37 (06) : 2901 - 2909
  • [3] Surrogate-driven respiratory motion model for projection-resolved motion estimation and motion compensated cone-beam CT reconstruction from unsorted projection data
    Huang, Yuliang
    Thielemans, Kris
    Price, Gareth
    McClelland, Jamie R.
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (02)
  • [4] Digital reconstruction of high-quality daily 4D cone-beam CT images using prior knowledge of anatomy and respiratory motion
    Zhang, Yongbin
    Yang, Jinzhong
    Zhang, Lifei
    Court, Laurence E.
    Gao, Song
    Balter, Peter A.
    Dong, Lei
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 40 : 30 - 38
  • [5] On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion
    Worm, Esben S.
    Hoyer, Morten
    Fledelius, Walther
    Nielsen, Jens E.
    Larsen, Lars P.
    Poulsen, Per R.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2012, 83 (01): : E145 - E151
  • [6] Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT
    Brehm, Marcus
    Paysan, Pascal
    Oelhafen, Markus
    Kachelriess, Marc
    MEDICAL PHYSICS, 2013, 40 (10)
  • [7] Motion compensation for cone-beam CT using Fourier consistency conditions
    Berger, M.
    Xia, Y.
    Aichinger, W.
    Mentl, K.
    Unberath, M.
    Aichert, A.
    Riess, C.
    Hornegger, J.
    Fahrig, R.
    Maier, A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (17) : 7181 - 7215
  • [8] 4D liver tumor localization using cone-beam projections and a biomechanical model
    Zhang, You
    Folkert, Michael R.
    Li, Bin
    Huang, Xiaokun
    Meyer, Jeffrey J.
    Chiu, Tsuicheng
    Lee, Pam
    Tehrani, Joubin Nasehi
    Cai, Jing
    Parsons, David
    Jia, Xun
    Wang, Jing
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : 183 - 192
  • [9] An external field prior for the hidden Potts model with application to cone-beam computed tomography
    Moores, Matthew T.
    Hargrave, Catriona E.
    Deegan, Timothy
    Poulsen, Michael
    Harden, Fiona
    Mengersen, Kerrie
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 86 : 27 - 41
  • [10] Motion compensated cone-beam CT reconstruction using an a priori motion model from CT simulation: a pilot study
    Lauria, Michael
    Miller, Claudia
    Singhrao, Kamal
    Lewis, John
    Lin, Weicheng
    O'Connell, Dylan
    Naumann, Louise
    Stiehl, Bradley
    Santhanam, Anand
    Boyle, Peter
    Raldow, Ann C.
    Goldin, Jonathan
    Barjaktarevic, Igor
    Low, Daniel A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (07)