A guide to group effective connectivity analysis, part 2: Second level analysis with PEB

被引:229
作者
Zeidman, Peter [1 ]
Jafarian, Amirhossein [1 ]
Seghier, Mohamed L. [2 ]
Litvak, Vladimir [1 ]
Cagnan, Hayriye [3 ]
Price, Cathy J. [1 ]
Friston, Karl J. [1 ]
机构
[1] Wellcome Ctr Human Neuroimaging, 12 Queen Sq, London WC1N 3AR, England
[2] ECAE, Cognit Neuroimaging Unit, Abu Dhabi, U Arab Emirates
[3] John Radcliffe Hosp, Nuffield Dept Clin Neurosci, Level 6,West Wing, Oxford OX3 9DU, England
关键词
BAYESIAN MODEL SELECTION; EMPIRICAL BAYES; ATTENTION; CORTEX; DCM;
D O I
10.1016/j.neuroimage.2019.06.032
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper provides a worked example of using Dynamic Causal Modelling (DCM) and Parametric Empirical Bayes (PEB) to characterise inter-subject variability in neural circuitry (effective connectivity). It steps through an analysis in detail and provides a tutorial style explanation of the underlying theory and assumptions (i.e, priors). The analysis procedure involves specifying a hierarchical model with two or more levels. At the first level, state space models (DCMs) are used to infer the effective connectivity that best explains a subject's neuroimaging timeseries (e.g. fMRI, MEG, EEG). Subject-specific connectivity parameters are then taken to the group level, where they are modelled using a General Linear Model (GLM) that partitions between-subject variability into designed effects and additive random effects. The ensuing (Bayesian) hierarchical model conveys both the estimated connection strengths and their uncertainty (i.e., posterior covariance) from the subject to the group level; enabling hypotheses to be tested about the commonalities and differences across subjects. This approach can also finesse parameter estimation at the subject level, by using the group-level parameters as empirical priors. The preliminary first level (subject specific) DCM for fMRI analysis is covered in a companion paper. Here, we detail group-level analysis procedures that are suitable for use with data from any neuroimaging modality. This paper is accompanied by an example dataset, together with step-by-step instructions demonstrating how to reproduce the analyses.
引用
收藏
页码:12 / 25
页数:14
相关论文
共 28 条
  • [1] [Anonymous], 2006, STAT PARAMETRIC MAPP
  • [2] Canonical Microcircuits for Predictive Coding
    Bastos, Andre M.
    Usrey, W. Martin
    Adams, Rick A.
    Mangun, George R.
    Fries, Pascal
    Friston, Karl J.
    [J]. NEURON, 2012, 76 (04) : 695 - 711
  • [3] Distinct Top-down and Bottom-up Brain Connectivity During Visual Perception and Imagery
    Dijkstra, N.
    Zeidman, P.
    Ondobaka, S.
    van Gerven, M. A. J.
    Friston, K.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [4] Expectation violation and attention to pain jointly modulate neural gain in somatosensory cortex
    Fardo, Francesca
    Auksztulewicz, Ryszard
    Allen, Micah
    Dietz, Martin J.
    Roepstorff, Andreas
    Friston, Karl J.
    [J]. NEUROIMAGE, 2017, 153 : 109 - 121
  • [5] Friston K, 2015, FRONT SYST NEUROSCI, V9, DOI [10.5589/fnsys.2015.00164, 10.3389/fnsys.2015.00164]
  • [6] Bayesian model reduction and empirical Bayes for group (DCM) studies
    Friston, Karl J.
    Litvak, Vladimir
    Oswal, Ashwini
    Razi, Adeel
    Stephan, Klaas E.
    van Wijk, Bernadette C. M.
    Ziegler, Gabriel
    Zeidman, Peter
    [J]. NEUROIMAGE, 2016, 128 : 413 - 431
  • [7] Post hoc Bayesian model selection
    Friston, Karl J.
    Penny, Will
    [J]. NEUROIMAGE, 2011, 56 (04) : 2089 - 2099
  • [8] Variational free energy and the Laplace approximation
    Friston, Karl J.
    Mattout, Jeremie
    Trujillo-Barreto, Nelson
    Ashburner, John
    Penny, Will
    [J]. NEUROIMAGE, 2007, 34 (01) : 220 - 234
  • [9] Dynamic causal modelling
    Friston, KJ
    Harrison, L
    Penny, W
    [J]. NEUROIMAGE, 2003, 19 (04) : 1273 - 1302
  • [10] Bayesian model averaging: A tutorial
    Hoeting, JA
    Madigan, D
    Raftery, AE
    Volinsky, CT
    [J]. STATISTICAL SCIENCE, 1999, 14 (04) : 382 - 401