Laminar CuO-water nano-fluid flow and heat transfer in a backward-facing step with and without obstacle

被引:26
|
作者
Togun, Hussein [1 ]
机构
[1] Univ Thi Qar, Dept Mech Engn, Nassiriya 64001, Iraq
关键词
Laminar flow; Thermal performance; Separation flow; Backward-facing step; Nano-fluids; THERMAL-CONDUCTIVITY; NUMERICAL-SIMULATION; TRANSFER ENHANCEMENT; NANOFLUIDS; CHANNEL;
D O I
10.1007/s13204-015-0441-7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper presents a numerical investigate on CuO-water nano-fluid and heat transfer in a backward-facing step with and without obstacle. The range of Reynolds number varied from 75 to 225 with volume fraction on CuO nanoparticles varied from 1 to 4 % at constant heat flux was investigated. Continuity, momentum, and energy equations with finite volume method in two dimensions were employed. Four different configurations of backward-facing step (without obstacle, with obstacle of 1.5 mm, with obstacle of 3 mm, with obstacle of 4.5 mm) were considered to find the best thermal performance. The results show that the maximum augmentation in heat transfer was about 22 % for backward-facing step with obstacle of 4.5 mm and using CuO nanoparticles at Reynolds number of 225 compared with backward-facing step without obstacle. It is also observed that increase in size of recirculation region with increase of height obstacle on the channel wall has remarkable effect on thermal performance. The results also found that increases in Reynolds number, height obstacle, and volume fractions of CuO nanoparticles lead to increase of pressure drop.
引用
收藏
页码:371 / 378
页数:8
相关论文
共 50 条
  • [31] Study on backward-facing step flow and heat transfer characteristics of hybrid nanofluids
    Cong Qi
    Zi Ding
    Jianglin Tu
    Yuxing Wang
    Yinjie Wang
    Journal of Thermal Analysis and Calorimetry, 2021, 144 : 2269 - 2284
  • [32] Numerical Simulation of Flow and Heat Transfer Characteristics of CuO-Water Nano fluids in a Flat Tube
    She, Luchao
    Fan, Guangming
    FRONTIERS IN ENERGY RESEARCH, 2018, 6
  • [33] Intensification of heat transfer behind the backward-facing step using tabs
    Terekhov, V. I.
    Dyachenko, A. Yu.
    Smulsky, Ya. J.
    Sunden, B.
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2022, 35
  • [34] The effect of nanofluids flow on mixed convection heat transfer over microscale backward-facing step
    Kherbeet, A. Sh.
    Mohammed, H. A.
    Salman, B. H.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (21-22) : 5870 - 5881
  • [35] Investigation of Graphene Oxide-Distilled Water Nanofluids with Consideration of Heat Transfer and Flow Structure for Backward-Facing Step Flow
    Karabulut, K.
    Alnak, D. E.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2021, 30 (02) : 300 - 316
  • [36] Experimental and numerical study of nanofluid flow and heat transfer over microscale backward-facing step
    Kherbeet, A. Sh.
    Mohammed, H. A.
    Salman, B. H.
    Ahmed, Hamdi E.
    Alawi, Omer A.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 79 : 858 - 867
  • [37] Computation of dilute particulate laminar flow over a backward-facing step
    Barton, IE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1996, 22 (03) : 211 - 221
  • [38] Laminar flow over a backward-facing step with a stream of hot particles
    Barton, IE
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1997, 18 (04) : 400 - 410
  • [39] Experimental and numerical study on the flow and heat transfer characteristic of nanofluid in the recirculation zone of backward-facing step microchannels
    Yang, Di
    Sun, Bin
    Xu, Tiankai
    Liu, Binbin
    Li, Hongwei
    APPLIED THERMAL ENGINEERING, 2021, 199
  • [40] Numerical simulations of laminar flow over a 3D backward-facing step
    Williams, PT
    Baker, AJ
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1997, 24 (11) : 1159 - 1183