An efficient method for computing eigenelements of Sturm-Liouville fourth-order boundary value problems

被引:25
|
作者
Attili, B. S.
Lesnic, D. [1 ]
机构
[1] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
[2] UAEU, Dept Math & Comp Sci, Coll Sci, Al Ain, U Arab Emirates
关键词
decomposition method; eigenfunctions; eigenvalues; Sturm-Liouville problems; DIFFERENTIAL-EQUATIONS; DECOMPOSITION METHOD; ADOMIAN POLYNOMIALS;
D O I
10.1016/j.amc.2006.05.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an efficient method based on the Adomian decomposition for computing the eigenelements of fourth-order Sturm-Liouville boundary value problems is developed. Numerical examples show that the method proposed is easy to implement and produces accurate results. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1247 / 1254
页数:8
相关论文
共 50 条
  • [31] Some results on the fractional order Sturm-Liouville problems
    Ru, Yuanfang
    Wang, Fanglei
    An, Tianqing
    An, Yukun
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [32] Decomposition method for solving a system of fourth-order obstacle boundary value problems
    Momani, Shaher
    Moadi, Khaled
    Noor, Muhammad Aslam
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) : 923 - 931
  • [33] Eigenvalues of fourth-order boundary value problems with distributional potentials
    Zhang, Hai-yan
    Ao, Ji-jun
    Bo, Fang-zhen
    AIMS MATHEMATICS, 2022, 7 (05): : 7294 - 7317
  • [34] A reliable algorithm for solving fourth-order boundary value problems
    Momani S.
    Moadi K.
    J. Appl. Math. Comp., 2006, 3 (185-197): : 185 - 197
  • [35] Eigenvalues for iterative systems of Sturm-Liouville fractional order two-point boundary value problems
    Prasad, Kapula Rajendra
    Krushna, Boddu Muralee Bala
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) : 638 - 653
  • [36] Eigenvalues for iterative systems of Sturm-Liouville fractional order two-point boundary value problems
    Kapula Rajendra Prasad
    Boddu Muralee Bala Krushna
    Fractional Calculus and Applied Analysis, 2014, 17 : 638 - 653
  • [37] A Reliable Method for Solving Fractional Sturm-Liouville Problems
    Khashshan, M. M.
    Syam, Muhammed I.
    Al Mokhmari, Ahlam
    MATHEMATICS, 2018, 6 (10)
  • [38] Adomian Decomposition Method for Computing Eigen-Values of Singular Sturm-Liouville Problems
    Singh, Neelima
    Kumar, Manoj
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2013, 36 (03): : 311 - 318
  • [39] Multiplicity and nonexistence of positive solutions to impulsive Sturm-Liouville boundary value problems
    Yang, Xuxin
    Liu, Piao
    Wang, Weibing
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
  • [40] Fractional Sturm-Liouville boundary value problems in unbounded domains: Theory and applications
    Khosravian-Arab, Hassan
    Dehghan, Mehdi
    Eslahchi, M. R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 299 : 526 - 560