Determination of the Fate and Contribution of Ex Vivo Expanded Human Bone Marrow Stem and Progenitor Cells for Bone Formation by 2.3ColGFP

被引:25
|
作者
Yin, Dezhong [1 ]
Wang, Zhuo [2 ]
Gao, Qinghong [3 ]
Sundaresan, Renuka [1 ]
Parrish, Chris [1 ]
Yang, Qingfen [4 ]
Krebsbach, Paul H. [2 ]
Lichtler, Alexander C. [4 ]
Rowe, David W. [4 ]
Hock, Janet [1 ,2 ]
Liu, Peng [1 ,2 ]
机构
[1] Aastrom Biosci Inc, Ann Arbor, MI 48105 USA
[2] Univ Michigan, Sch Dent, Dept Biol & Mat Sci, Ann Arbor, MI 48109 USA
[3] Sichuan Univ, Dept Head & Neck Oncol, W China Hosp Stomatol, Chengdu 610064, Peoples R China
[4] Univ Connecticut, Ctr Hlth, Dept Genet & Dev Biol, Farmington, CT USA
关键词
CLINICAL-SCALE EXPANSION; LENTIVIRAL VECTORS; HEMATOPOIETIC-CELLS; STROMAL CELLS; EXPRESSION; GENE; TRANSPLANTATION; RECONSTITUTION; REGENERATION; TRANSGENES;
D O I
10.1038/mt.2009.151
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bone marrow transplantation can provide an effective cell-based strategy to enhance bone repair. However, the fate of implanted cells and the extent of their contribution to bone osteoinduction remain uncertain. To define the fate of bone marrow-derived cells and their contribution in vivo, we used a bone-specific collagen I-promoter (2.3Col) driving green fluorescent protein (GFP) (2.3ColGFP) within a lentiviral vector. Prior to in vivo cell fate determination, we verified a high efficiency of lentiviral transduction in human bone marrow stromal cells (hBMSCs), without altering the proliferation or differentiation potential of these cells. We showed that the 2.3ColGFP marker responded to endogenous transcriptional regulation signals. In a mouse ossicle model, we demonstrated that the 2.3ColGFP marker is able to specifically define human bone marrow-derived stem cells that enter the osteoblast lineage in vivo. In addition, cells labeled with 2.3ColGFP with the donor origin, directly make a major contribution to bone formation. Furthermore, we also demonstrated in a calvarial defect model that a mixture of human bone marrow-derived populations, have stronger bone regenerative potential than that of hBMSCs, and an optimal dose is required for bone regeneration by the mixed populations.
引用
收藏
页码:1967 / 1978
页数:12
相关论文
共 50 条
  • [1] Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo
    Gu, Shaofeng
    Xing, Chengzhong
    Han, Jingyi
    Tso, Mark O. M.
    Hong, Jing
    MOLECULAR VISION, 2009, 15 (9-11): : 99 - 107
  • [2] Association between in vivo bone formation and ex vivo migratory capacity of human bone marrow stromal cells
    Andersen, Rikke K.
    Zaher, Walid
    Larsen, Kenneth H.
    Ditzel, Nicholas
    Drews, Katharina
    Wruck, Wasco
    Adjaye, James
    Abdallah, Basem M.
    Kassem, Moustapha
    STEM CELL RESEARCH & THERAPY, 2015, 6
  • [3] Ex vivo expansions and transplantations of mouse bone marrow-derived hematopoietic stem/progenitor cells
    Wang Jin-fu
    Wu Yi-fan
    Harrintong Jenny
    Ian K. McNiece
    Journal of Zhejiang University-SCIENCE A, 2004, 5 (2): : 157 - 163
  • [4] Senolytic controls bone marrow mesenchymal stem cells fate improving bone formation
    Zhang, Dianying
    Yu, Kai
    Yang, Jie
    Xie, Shangding
    Yang, Jian
    Tan, Li
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2020, 12 (06): : 3078 - 3088
  • [5] Proteomics reveals the potential mechanism of Tanshinone IIA in promoting the Ex Vivo expansion of human bone marrow mesenchymal stem cells
    Yuan, Pei
    Qin, Hong-yan
    Wei, Jia-yun
    Chen, Geshuyi
    Li, Xun
    REGENERATIVE THERAPY, 2022, 21 : 560 - 573
  • [6] Bone marrow mesenchymal stem cells enhance bone formation in orthodontically expanded maxillae in rats
    Ekizer, Abdullah
    Yalvac, Mehmet Emir
    Uysal, Tancan
    Sonmez, Mehmet Fatih
    Sahin, Fikrettin
    ANGLE ORTHODONTIST, 2015, 85 (03) : 394 - 399
  • [7] Ex vivo culture of human cord blood hematopoietic stem/progenitor cells adversely influences their distribution to other bone marrow compartments after intra-bone marrow transplantation
    Yamamura, Kentaro
    Ohishi, Kohshi
    Masuya, Masahiro
    Miyata, Eri
    Sugimoto, Yuka
    Nakamura, Shiho
    Fujieda, Atsushi
    Araki, Hiroto
    Katayama, Naoyuki
    STEM CELLS, 2008, 26 (02) : 543 - 549
  • [8] Inner ear progenitor cells can be generated in vitro from human bone marrow mesenchymal stem cells
    Boddy, Sarah L.
    Chen, Wei
    Romero-Guevara, Ricardo
    Kottam, Lucksy
    Bellantuono, Illaria
    Rivolta, Marcelo N.
    REGENERATIVE MEDICINE, 2012, 7 (06) : 757 - 767
  • [9] Ex Vivo Expanded Allogeneic Mesenchymal Stem Cells With Bone Marrow Transplantation Improved Osteogenesis in Infants With Severe Hypophosphatasia
    Taketani, Takeshi
    Oyama, Chigusa
    Mihara, Aya
    Tanabe, Yuka
    Abe, Mariko
    Hirade, Tomohiro
    Yamamoto, Satoshi
    Bo, Ryosuke
    Kanai, Rie
    Tadenuma, Taku
    Michibata, Yuko
    Yamamoto, Soichiro
    Hattori, Miho
    Katsube, Yoshihiro
    Ohnishi, Hiroe
    Sasao, Mari
    Oda, Yasuaki
    Hattori, Koji
    Yuba, Shunsuke
    Ohgushi, Hajime
    Yamaguchi, Seiji
    CELL TRANSPLANTATION, 2015, 24 (10) : 1931 - 1943
  • [10] Transplantation of Ex Vivo Expanded Bone Marrow-Derived Endothelial Progenitor Cells Enhances Chronic Venous Thrombus Resolution and Recanalization
    Meng, Qingyou
    Li, Xiaoqiang
    Yu, Xiaobin
    Lei, Fengrui
    Jiang, Kun
    Li, Chuanyong
    CLINICAL AND APPLIED THROMBOSIS-HEMOSTASIS, 2011, 17 (06) : E196 - E201