Density functional theory study on optical and electronic properties of co-doped graphene quantum dots based on different nitrogen doping patterns

被引:45
|
作者
Feng, Jianguang [1 ]
Guo, Qian [1 ]
Song, Na [1 ]
Liu, Haiying [2 ]
Dong, Hongzhou [1 ]
Chen, Yingjie [1 ]
Yu, Liyan [1 ]
Dong, Lifeng [1 ,3 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266042, Peoples R China
[2] Weifang Univ Sci & Technol, Facil Hort Lab Univ Shandong, Weifang 262700, Peoples R China
[3] Hamline Univ, Dept Phys, St Paul, MN 55104 USA
基金
中国国家自然科学基金;
关键词
Graphene quantum dots; Heteroatom; Co-doping; Optical property; Electronic structure; Density functional theory; CHEMICAL-REACTIVITY; OXYGEN REDUCTION; PHOSPHORUS; SULFUR; DFT; FLUORESCENCE; ABSORPTION; PHILICITY; TOXICITY; FE3+;
D O I
10.1016/j.diamond.2021.108264
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Heteroatom doping, especially co-doping, is an effective way to tailor electronic structures of graphene quantum dots (GQDs) with synergistic effects and desirable properties. However, due to different synthesis methods, the widespread use of GQDs co-doped with heteroatoms is hindered by the poor understanding of their optical properties and mechanisms. In this work, co-doped GQDs based on three N-doping configurations are chosen to reveal underlying mechanisms of optical properties using density functional theory and time-dependent density functional theory calculations. Based on different N-doping patterns, B, P and S atoms can endow GQDs with a wide spectrum of new optical properties and electronic structures. The HOMO-LUMO gaps of N-doped GQDs with graphitic N, pyrrolic N, and pyridinic N are 0.77, 0.25 and 2.69 eV, respectively. In the co-doped GQDs, B, P and S containing functional groups cause low absorptions in the range of 400 to 800 nm and multiple absorption peaks at about 400 and 600 nm, while the N atom affects the position and intensity of prominent absorption peak according to three different N-doping patterns. The B atom forms sp(2) hybridization in the graphene lattice, while the P and S atoms transform the sp(2) hybridized carbon into the sp(3) state. It is anticipated that this work will provide valuable insights for understanding absorption mechanisms and electronic properties of heteroatom co-doped GQDs as well as achieving new applications with well-defined and desired properties.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Influence on structural, electronic and optical properties of Fe doped ZnS quantum dot: A density functional theory based study
    Momin, Md. Abdul
    Islam, Md. Aminul
    Majumdar, Abhijit
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2021, 121 (21)
  • [22] Simulation of absorbing properties of Co-doped ZnO Based on Density Functional Theory
    Li, Teng
    Pan, Hongliang
    Yang, Shiliang
    ADVANCES IN MECHATRONICS, AUTOMATION AND APPLIED INFORMATION TECHNOLOGIES, PTS 1 AND 2, 2014, 846-847 : 1927 - 1930
  • [23] Highly sensitive fluorescent probe for mesotrione based on nitrogen and sulfur co-doped graphene quantum dots
    Du, Pengfei
    Song, Jiamu
    Zou, Xinya
    Han, Zhenlong
    Li, Jiayan
    Chen, Baoshan
    He, Xipu
    JOURNAL OF NANOPARTICLE RESEARCH, 2023, 25 (12)
  • [24] Highly sensitive fluorescent probe for mesotrione based on nitrogen and sulfur co-doped graphene quantum dots
    Pengfei Du
    Jiamu Song
    Xinya Zou
    Zhenlong Han
    Jiayan Li
    Baoshan Chen
    Xipu He
    Journal of Nanoparticle Research, 2023, 25
  • [25] Density Functional Theory Investigation of Nonlinear Optical Properties of T-Graphene Quantum Dots
    Deb, Jyotirmoy
    Paul, Debolina
    Sarkar, Utpal
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (07): : 1312 - 1320
  • [26] Flexible photodetector based on cotton coated with reduced graphene oxide and sulfur and nitrogen co-doped graphene quantum dots
    Luo, Cheng
    Xie, He
    Hou, Chengyi
    Zhang, Qinghong
    Li, Yaogang
    Wang, Hongzhi
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (04) : 3242 - 3251
  • [27] Flexible photodetector based on cotton coated with reduced graphene oxide and sulfur and nitrogen co-doped graphene quantum dots
    Cheng Luo
    He Xie
    Chengyi Hou
    Qinghong Zhang
    Yaogang Li
    Hongzhi Wang
    Journal of Materials Science, 2019, 54 : 3242 - 3251
  • [28] Electronic, magnetic, and optical properties of graphene oxide nanosheets doped with Au atoms: a density functional theory study
    David O. Idisi
    Evans M. Benecha
    The European Physical Journal Plus, 137
  • [29] Electronic, magnetic, and optical properties of graphene oxide nanosheets doped with Au atoms: a density functional theory study
    Idisi, David O.
    Benecha, Evans M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (07):
  • [30] Density functional theory study of the effect of Vanadium doping on electronic and optical properties of NiO
    Twagirayezu, Fidele J.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING, 2019, 8 (02)