A q-ANALOGUE OF A HYPERGEOMETRIC CONGRUENCE

被引:6
|
作者
Gu, Cheng-Yang [1 ]
Guo, Victor J. W. [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
basic hypergeometric series; q-congruence; congruence; cyclotomic polynomia; SUPERCONGRUENCE; FORMULAS;
D O I
10.1017/S0004972719000777
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a q-analogue of the following congruence: for any odd prime p, \sum_{k=0}<^>{(p-1)/2}(-1)<^>k(6k+1)\frac{(\frac{1}{2})_k<^>3}{k!<^>3 8<^>k}\sum_{j=1}<^>{k}(\frac{1}{(2j-1)<^>2}-\frac{1}{16j<^>2}) \equiv 0\pmod{p}, which was originally conjectured by Long and later proved by Swisher. This confirms a conjecture of the second author ['A q-analogue of the (L.2) supercongruence of Van Hamme', J. Math. Anal. Appl. 466 (2018), 749761].
引用
收藏
页码:294 / 298
页数:5
相关论文
共 50 条