Sharp Upper and Lower Bounds of VDB Topological Indices of Digraphs

被引:11
作者
Monsalve, Juan [1 ]
Rada, Juan [1 ]
机构
[1] Univ Antioquia, Inst Matemat, Calle 67 53-108, Medellin 050010, Colombia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
vertex-degree-based topological index; digraph; orientation of a graph; extremal value; GRAPHS;
D O I
10.3390/sym13101903
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A vertex-degree-based (VDB, for short) topological index f induced by the numbers {f(ij)} was recently defined for a digraph D, as phi D=1/2 n-ary sumation(uv)f(du+dv-), where d(u)(+) denotes the out-degree of the vertex u, d(v)(-) denotes the in-degree of the vertex v, and the sum runs over the set of arcs uv of D. This definition generalizes the concept of a VDB topological index of a graph. In a general setting, we find sharp lower and upper bounds of a symmetric VDB topological index over D-n, the set of all digraphs with n non-isolated vertices. Applications to well-known topological indices are deduced. We also determine extremal values of symmetric VDB topological indices over OTn and OG, the set of oriented trees with n vertices, and the set of all orientations of a fixed graph G, respectively.
引用
收藏
页数:13
相关论文
共 32 条
  • [21] Sharp lower bounds for the number of maximum matchings in bipartite multigraphs
    Kostochka, Alexandr V.
    West, Douglas B.
    Xiang, Zimu
    JOURNAL OF GRAPH THEORY, 2024, 106 (03) : 525 - 555
  • [22] Upper and lower bounds on the size of Bk[g] sets
    Johnston, Griffin
    Tait, Michael
    Timmons, Craig
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 83 : 129 - 140
  • [23] Upper and Lower Bounds for Online Routing on Delaunay Triangulations
    Bonichon, Nicolas
    Bose, Prosenjit
    De Carufel, Jean-Lou
    Perkovic, Ljubomir
    van Renssen, Andre
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (02) : 482 - 504
  • [24] Upper and Lower Bounds for Online Routing on Delaunay Triangulations
    Bonichon, Nicolas
    Bose, Prosenjit
    De Carufel, Jean-Lou
    Perkovic, Ljubomir
    van Renssen, Andre
    ALGORITHMS - ESA 2015, 2015, 9294 : 203 - 214
  • [25] The kth upper and lower bases of primitive nonpowerful minimally strong signed digraphs
    Shao, Yanling
    Shen, Jian
    Gao, Yubin
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (09) : 1093 - 1113
  • [27] Upper and Lower Bounds for the Mixed Degree-Kirchhoff Index
    Bianchi, Monica
    Cornaro, Alessandra
    Palacios, Jose Luis
    Torriero, Anna
    FILOMAT, 2016, 30 (09) : 2351 - 2358
  • [28] Upper and lower bounds for Fv(4,4;5)
    Xu, Xiaodong
    Luo, Haipeng
    Shao, Zehui
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01)
  • [29] Lower and Upper Bounds of Fractional Metric Dimension of Connected Networks
    Javaid, Muhammad
    Aslam, Muhammad Kamran
    Asjad, Muhammad Imran
    Almutairi, Bander N.
    Inc, Mustafa
    Almohsen, Bandar
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [30] Sharp Bounds of Kulli-Basava Indices in Generalized Form for k-Generalized Quasi Trees
    Afridi, Sheeba
    Khan, Muhammad Yasin
    Ali, Gohar
    Ali, Murtaza
    Nurhidayat, Irfan
    Arefin, Mohammad Asif
    JOURNAL OF MATHEMATICS, 2023, 2023