Deep Learning for 3D Classification Based on Point Cloud with Local Structure

被引:0
|
作者
Song, Yanan [1 ]
Li, Xinyu [1 ]
Gao, Liang [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Point Cloud; 3D Classification; Deep Learning; Local Region Search; Data Preprocessing;
D O I
10.1109/icicsp48821.2019.8958558
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Point cloud consists of many unordered and unstructured points, which makes the simple deep learning (DL) network hard to capture the local structure of point cloud. This shortcoming limits the ability of the DL network to recognize the fine-grained features of objects. Network structure is changed in some studies for this problem, but this increases the network complexity. This paper proposes an effective preprocessing method for point cloud to deal with this problem. The local region that represents the local structure of point is searched by using a cube with fixed side length. All of the points in the local region are used to construct the feature vector of the center point located at the center of the cube. These feature vectors are input into a simple convolutional neural network. The ModelNet40 shape classification benchmark is used to evaluate the proposed method. Experimental results show that the proposed method improves the classification accuracy of the simple deep learning network.
引用
收藏
页码:405 / 409
页数:5
相关论文
共 50 条
  • [1] DEEP LEARNING ON POINT CLOUD FOR 3D CLASSIFICATION BASED ON SPIKING NEURAL NETWORK
    Zhang Silin
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [2] Deep learning-based 3D point cloud classification: A systematic survey and outlook
    Zhang, Huang
    Wang, Changshuo
    Tian, Shengwei
    Lu, Baoli
    Zhang, Liping
    Ning, Xin
    Bai, Xiao
    DISPLAYS, 2023, 79
  • [3] A review of deep learning based on 3D point cloud segmentation
    Lu J.
    Jia X.-R.
    Zhou J.
    Liu W.
    Zhang K.-B.
    Pang F.-F.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (03): : 595 - 611
  • [4] 3D Point Cloud Analysis and Classification in Large-Scale Scene Based on Deep Learning
    Wang, Lei
    Meng, Weiliang
    Xi, Runping
    Zhang, Yanning
    Ma, Chengcheng
    Lu, Ling
    Zhang, Xiaopeng
    IEEE ACCESS, 2019, 7 : 55649 - 55658
  • [5] Deep 3D point cloud classification and segmentation network based on GateNet
    Liu, Hui
    Tian, Shuaihua
    VISUAL COMPUTER, 2024, 40 (02): : 971 - 981
  • [6] Deep 3D point cloud classification and segmentation network based on GateNet
    Hui Liu
    Shuaihua Tian
    The Visual Computer, 2024, 40 (2) : 971 - 981
  • [7] Point-BLS: 3D Point Cloud Classification Combining Deep Learning and Broad Learning System
    Chen, Yixuan
    Fu, Mengyin
    Shen, Kai
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2810 - 2815
  • [8] Deep learning with simulated laser scanning data for 3D point cloud classification
    Esmoris, Alberto M.
    Weiser, Hannah
    Winiwarter, Lukas
    Cabaleiro, Jose C.
    Hofle, Bernhard
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 215 : 192 - 213
  • [9] Learning General and Distinctive 3D Local Deep Descriptors for Point Cloud Registration
    Poiesi, Fabio
    Boscaini, Davide
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3979 - 3985
  • [10] Review of 3D Point Cloud Processing Methods Based on Deep Learning
    Wu Y.
    Chen H.
    Zhang Y.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51 (05):