Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM

被引:80
作者
Zauner, Christoph [1 ]
Hengstberger, Florian [1 ]
Etzel, Mark [1 ]
Lager, Daniel [1 ]
Hofmann, Rene [1 ,2 ]
Walter, Heimo [2 ]
机构
[1] AIT Austrian Inst Technol GmbH, Dept Energy, Sustainable Thermal Energy Syst, Giefinggasse 2, A-1210 Vienna, Austria
[2] Vienna Univ Technol, Inst Energy Syst & Thermodynam, Getreidemarkt 9-BA, A-1060 Vienna, Austria
关键词
Latent heat storage; PCM; Polymer; Experimental storage characterization; CFD simulation; THERMAL-ENERGY STORAGE; PHASE-CHANGE MATERIALS; POWER-PLANTS; DESIGN; SYSTEM;
D O I
10.1016/j.apenergy.2016.06.138
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Polymers have rarely been used as storage materials in latent heat storages up to now. Thus, we systematically screened all polymers available on a large-scale, selected promising ones based on their theoretical properties and experimentally tested more than 50 candidates. We found that polyethylene, polyoxymethylene and polyamides are promising even as recycled material. Especially high density polyethylene (HDPE) turned out to be suitable as was shown by detailed thermophysical characterization including more than 1000 heating and cooling cycles for INEOS Rigidex HD6070EA. We built a storage with 170 kg HDPE and a total mass of 600 kg based on a fin-tube heat exchanger and characterized its energy capacity, power characteristics and temperature profiles using a thermal oil test rig. A 3-dimensional model was implemented in ANSYS Fluent achieving excellent agreement between experiment and simulation. By analyzing the internal heat transfer contributions, temperature distributions and flow conditions, we were able to propose an optimized design and operation for future polymer latent heat storages. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:237 / 246
页数:10
相关论文
共 34 条
  • [1] Abe Y, 1984, J SOL ENERGY ENG, P465
  • [2] Arce P., 2011, Appl. Energy, V88, P2764, DOI [DOI 10.1016/j.apenergy.2011.01.067, 10.1016/j.apenergy.2011.01.067, DOI 10.1016/J.APENERGY.2011.01.067]
  • [3] State of the art of thermal storage for demand-side management
    Arteconi, A.
    Hewitt, N. J.
    Polonara, F.
    [J]. APPLIED ENERGY, 2012, 93 : 371 - 389
  • [4] Peak load shifting with energy storage and price-based control system
    Barzin, Reza
    Chen, John J. J.
    Young, Brent R.
    Farid, Mohammed M.
    [J]. ENERGY, 2015, 92 : 505 - 514
  • [5] Analysis of the experimental behaviour of a 100 kWth latent heat storage system for direct steam generation in solar thermal power plants
    Bayon, Rocio
    Rojas, Esther
    Valenzuela, Loreto
    Zarza, Eduardo
    Leon, Javier
    [J]. APPLIED THERMAL ENGINEERING, 2010, 30 (17-18) : 2643 - 2651
  • [6] CO2 mitigation accounting for Thermal Energy Storage (TES) case studies
    Cabeza, Luisa F.
    Miro, Laia
    Oro, Eduard
    de Gracia, Alvaro
    Martin, Viktoria
    Kroenauer, Andreas
    Rathgeber, Christoph
    Farid, Mohammed M.
    Paksoy, Halime O.
    Martinez, Monica
    Ines Fernandez, A.
    [J]. APPLIED ENERGY, 2015, 155 : 365 - 377
  • [7] Thermal conductivity bounds for isotropic, porous materials
    Carson, JK
    Lovatt, SJ
    Tanner, DJ
    Cleland, AC
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (11) : 2150 - 2158
  • [8] Chui JN, GREENST 13 INT C THE
  • [9] CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants
    Fornarelli, F.
    Camporeale, S. M.
    Fortunato, B.
    Torresi, M.
    Oresta, P.
    Magliocchetti, L.
    Miliozzi, A.
    Santo, G.
    [J]. APPLIED ENERGY, 2016, 164 : 711 - 722
  • [10] Fried JR, 2014, INTRO POLYM SCI