Lectures on differential equations for Feynman integrals

被引:214
作者
Henn, Johannes M. [1 ]
机构
[1] Inst Adv Study, Olden Lane, Princeton, NJ 08540 USA
关键词
Feynman integrals; multiple polylogarithms; periods; Chen iterated integrals; elliptic functions; NUMERICAL EVALUATION; AMPLITUDES; DIAGRAMS; RESPECT; GRAPH;
D O I
10.1088/1751-8113/48/15/153001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations (DE). These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to DE for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that is based on properties of the space-time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the DE. Finally, as an application of these ideas we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a DE.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] Tropical Monte Carlo quadrature for Feynman integrals
    Borinsky, Michael
    ANNALES DE L INSTITUT HENRI POINCARE D, 2023, 10 (04): : 635 - 685
  • [42] Symbology of Feynman integrals from twistor geometries
    He, Song
    Liu, Jiahao
    Tang, Yichao
    Yang, Qinglin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2024, 67 (03)
  • [43] Differential equations for loop integrals in Baikov representation
    Bosma, Jorrit
    Larsen, Kaper J.
    Zhang, Yang
    PHYSICAL REVIEW D, 2018, 97 (10)
  • [44] Gauss relations in Feynman integrals
    Feng, Tai-Fu
    Zhou, Yang
    Zhang, Hai-Bin
    PHYSICAL REVIEW D, 2025, 111 (01)
  • [45] Feynman integrals and intersection theory
    Mastrolia, Pierpaolo
    Mizera, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)
  • [46] Functional reduction of Feynman integrals
    Tarasov, O. V.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)
  • [47] Feynman integrals and multiple polylogarithms
    Weinzierl, Stefan
    RENORMALIZATION AND GALOIS THEORIES, 2009, 15 : 247 - +
  • [48] AMFlow: A Mathematica package for Feynman integrals computation via auxiliary mass flow
    Liu, Xiao
    Ma, Yan-Qing
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 283
  • [49] Evaluating Feynman integrals by the hypergeometry
    Feng, Tai-Fu
    Chang, Chao-Hsi
    Chen, Jian-Bin
    Gu, Zhi-Hua
    Zhang, Hai-Bin
    NUCLEAR PHYSICS B, 2018, 927 : 516 - 549
  • [50] Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals
    Panzer, Erik
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 188 : 148 - 166