Lectures on differential equations for Feynman integrals

被引:214
作者
Henn, Johannes M. [1 ]
机构
[1] Inst Adv Study, Olden Lane, Princeton, NJ 08540 USA
关键词
Feynman integrals; multiple polylogarithms; periods; Chen iterated integrals; elliptic functions; NUMERICAL EVALUATION; AMPLITUDES; DIAGRAMS; RESPECT; GRAPH;
D O I
10.1088/1751-8113/48/15/153001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations (DE). These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to DE for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that is based on properties of the space-time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the DE. Finally, as an application of these ideas we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a DE.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] Cuts of Feynman Integrals inHAq
    Frellesvig, Hjalte
    Papadopoulos, Costas G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04):
  • [32] An Introduction to Motivic Feynman Integrals
    Rella, Claudia
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
  • [33] ε-factorized differential equations for two-loop non-planar triangle Feynman integrals with elliptic curves
    Jiang, Xuhang
    Wang, Xing
    Yang, Li Lin
    Zhao, Jingbang
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (09)
  • [34] Numerical evaluation of iterated integrals related to elliptic Feynman integrals
    Walden, Moritz
    Weinzierl, Stefan
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 265
  • [35] Feynman Integrals and Motives of Configuration Spaces
    Ceyhan, Ozgur
    Marcolli, Matilde
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 313 (01) : 35 - 70
  • [36] Feynman integrals of Grassmannians
    Feng, Tai-Fu
    Zhang, Hai-Bin
    Chang, Chao-Hsi
    PHYSICAL REVIEW D, 2022, 106 (11)
  • [37] Complete algebraic reduction of one-loop tensor Feynman integrals
    Fleischer, J.
    Riemann, T.
    PHYSICAL REVIEW D, 2011, 83 (07):
  • [38] Sequential discontinuities of Feynman integrals and the monodromy group
    Bourjaily, Jacob L.
    Hannesdottir, Holmfridur
    McLeod, Andrew J.
    Schwartz, Matthew D.
    Vergu, Cristian
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
  • [39] Tropical Monte Carlo quadrature for Feynman integrals
    Borinsky, Michael
    ANNALES DE L INSTITUT HENRI POINCARE D, 2023, 10 (04): : 635 - 685
  • [40] Alphabet of one-loop Feynman integrals
    Chen, Jiaqi
    Ma, Chichuan
    Yang, Li Lin
    CHINESE PHYSICS C, 2022, 46 (09)