Lectures on differential equations for Feynman integrals

被引:214
|
作者
Henn, Johannes M. [1 ]
机构
[1] Inst Adv Study, Olden Lane, Princeton, NJ 08540 USA
关键词
Feynman integrals; multiple polylogarithms; periods; Chen iterated integrals; elliptic functions; NUMERICAL EVALUATION; AMPLITUDES; DIAGRAMS; RESPECT; GRAPH;
D O I
10.1088/1751-8113/48/15/153001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations (DE). These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to DE for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that is based on properties of the space-time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the DE. Finally, as an application of these ideas we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a DE.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations
    Eden, Burkhard
    Smirnov, Vladimir A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10):
  • [22] Periods and Feynman integrals
    Bogner, Christian
    Weinzierl, Stefan
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
  • [23] Feynman integrals and motives
    Marcolli, Matilde
    EUROPEAN CONGRESS OF MATHEMATICS 2008, 2010, : 293 - 332
  • [24] Finite Feynman integrals
    Gambuti, Giulio
    Kosower, David A.
    Novichkov, Pavel P.
    Tancredi, Lorenzo
    PHYSICAL REVIEW D, 2024, 110 (11)
  • [25] Functional reduction of one-loop Feynman integrals with arbitrary masses
    Tarasov, O., V
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (06)
  • [26] Invariant Differential Forms on Complexes of Graphs and Feynman Integrals
    Brown, Francis
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
  • [27] Feynman integrals and iterated integrals of modular forms
    Adams, Luise
    Weinzierl, Stefan
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (02) : 193 - 251
  • [28] Determining arbitrary Feynman integrals by vacuum integrals
    Liu, Xiao
    Ma, Yan-Qing
    PHYSICAL REVIEW D, 2019, 99 (07)
  • [29] Scattering amplitudes, Feynman integrals and multiple polylogarithms
    Duhr, Claude
    FEYNMAN AMPLITUDES, PERIODS AND MOTIVES, 2015, 648 : 109 - 133
  • [30] The physics and the mixed Hodge structure of Feynman integrals
    Vanhove, Pierre
    STRING-MATH 2013, 2014, 88 : 161 - 194