Opposition-based multi-objective whale optimization algorithm with multi-leader guiding

被引:7
|
作者
Li, Yang [1 ]
Li, Wei-gang [1 ]
Zhao, Yun-tao [1 ]
Liu, Ao [2 ]
机构
[1] Minist Educ, Engn Res Ctr Met Automat & Measurement Technol, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Evergrande Management, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-objective optimization problems; Whale optimization algorithm; Multi-leader guiding; Opposition-based learning strategy; DIFFERENTIAL EVOLUTION; OBJECTIVES; DIVERSITY;
D O I
10.1007/s00500-021-06390-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
During recent decades, evolutionary algorithms have been widely studied in optimization problems. The multi-objective whale optimization algorithm based on multi-leader guiding is proposed in this paper, which attempts to offer a proper framework to apply whale optimization algorithm and other swarm intelligence algorithms to solving multi-objective optimization problems. The proposed algorithm adopts several improvements to enhance optimization performance. First, search agents are classified into leadership set and ordinary set by grid mechanism, and multiple leadership solutions guide the population to search the sparse spaces to achieve more homogeneous exploration in per iteration. Second, the differential evolution and whale optimization algorithm are employed to generate the offspring for the leadership and ordinary solutions, respectively. In addition, a novel opposition-based learning strategy is developed to improve the distribution of the initial population. The performance of the proposed algorithm is verified in contrast to 10 classic or state-of-the-arts algorithms on 20 bi-objective and tri-objective unconstrained problems, and experimental results demonstrate the competitive advantages in optimization quality and convergence speed. Moreover, it is tested on load distribution of hot rolling, and the result proves its good performance in real-world applications. Thus, all of the aforementioned experiments have indicated that the proposed algorithm is comparatively effective and efficient.
引用
收藏
页码:15131 / 15161
页数:31
相关论文
共 50 条
  • [21] DYNAMIC ECONOMIC EMISSION DISPATCH USING WHALE OPTIMIZATION ALGORITHM FOR MULTI-OBJECTIVE FUNCTION
    Mehdi, M. F.
    Ahmad, A.
    Ul Haq, S. S.
    Saqib, M.
    Ullah, M. F.
    ELECTRICAL ENGINEERING & ELECTROMECHANICS, 2021, (02) : 64 - 69
  • [22] Multi-Objective Whale Optimization Algorithm for Computation Offloading Optimization in Mobile Edge Computing
    Huang, Mengxing
    Zhai, Qianhao
    Chen, Yinjie
    Feng, Siling
    Shu, Feng
    SENSORS, 2021, 21 (08)
  • [23] MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective Optimization
    Nobahari, Hadi
    Bighashdel, Ariyan
    2017 2ND CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC), 2017, : 60 - 65
  • [24] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [25] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891
  • [26] Multi-objective whale optimization algorithm and multi-objective grey wolf optimizer for solving next release problem with developing fairness and uncertainty quality indicators
    Ghasemi, Mohsen
    Bagherifard, Karamollah
    Parvin, Hamid
    Nejatian, Samad
    Pho, Kim-Hung
    APPLIED INTELLIGENCE, 2021, 51 (08) : 5358 - 5387
  • [27] Multi-objective culture whale optimization algorithm for reservoir flood control operation
    Wang W.
    Dong J.
    Wang Z.
    Zuao Y.
    Zhang R.
    Li G.
    Hu M.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (11): : 3494 - 3509
  • [28] An improved multi-objective optimization algorithm based on decomposition
    Wang, Wanliang
    Wang, Zheng
    Li, Guoqing
    Ying, Senliang
    2019 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2019, : 327 - 333
  • [29] A hybrid whale optimization algorithm with differential evolution optimization for multi-objective virtual machine scheduling in cloud computing
    Rana, Nadim
    Abd Latiff, Muhammad Shafie
    Abdulhamid, Shafi'i Muhammad
    Misra, Sanjay
    ENGINEERING OPTIMIZATION, 2022, 54 (12) : 1999 - 2016
  • [30] An Estimation of Distribution Algorithm With Multi-Leader Search
    Wang, Xiaofei
    Han, Tong
    Zhao, Hui
    IEEE ACCESS, 2020, 8 (08): : 37383 - 37405