Opposition-based multi-objective whale optimization algorithm with multi-leader guiding

被引:7
|
作者
Li, Yang [1 ]
Li, Wei-gang [1 ]
Zhao, Yun-tao [1 ]
Liu, Ao [2 ]
机构
[1] Minist Educ, Engn Res Ctr Met Automat & Measurement Technol, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Evergrande Management, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-objective optimization problems; Whale optimization algorithm; Multi-leader guiding; Opposition-based learning strategy; DIFFERENTIAL EVOLUTION; OBJECTIVES; DIVERSITY;
D O I
10.1007/s00500-021-06390-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
During recent decades, evolutionary algorithms have been widely studied in optimization problems. The multi-objective whale optimization algorithm based on multi-leader guiding is proposed in this paper, which attempts to offer a proper framework to apply whale optimization algorithm and other swarm intelligence algorithms to solving multi-objective optimization problems. The proposed algorithm adopts several improvements to enhance optimization performance. First, search agents are classified into leadership set and ordinary set by grid mechanism, and multiple leadership solutions guide the population to search the sparse spaces to achieve more homogeneous exploration in per iteration. Second, the differential evolution and whale optimization algorithm are employed to generate the offspring for the leadership and ordinary solutions, respectively. In addition, a novel opposition-based learning strategy is developed to improve the distribution of the initial population. The performance of the proposed algorithm is verified in contrast to 10 classic or state-of-the-arts algorithms on 20 bi-objective and tri-objective unconstrained problems, and experimental results demonstrate the competitive advantages in optimization quality and convergence speed. Moreover, it is tested on load distribution of hot rolling, and the result proves its good performance in real-world applications. Thus, all of the aforementioned experiments have indicated that the proposed algorithm is comparatively effective and efficient.
引用
收藏
页码:15131 / 15161
页数:31
相关论文
共 50 条
  • [1] Opposition-based multi-objective whale optimization algorithm with multi-leader guiding
    Yang Li
    Wei-gang Li
    Yun-tao Zhao
    Ao Liu
    Soft Computing, 2021, 25 : 15131 - 15161
  • [2] A Novel Opposition-Based Multi-objective Differential Evolution Algorithm for Multi-objective Optimization
    Peng, Lei
    Wang, Yuanzhen
    Dai, Guangming
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 162 - +
  • [3] A new multi-objective optimization algorithm combined with opposition-based learning
    Ewees, Ahmed A.
    Abd Elaziz, Mohamed
    Oliva, Diego
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165 (165)
  • [4] Opposition-Based Whale Optimization Algorithm
    Alamri, Hammoudeh S.
    Alsariera, Yazan A.
    Zamli, Kamal Z.
    ADVANCED SCIENCE LETTERS, 2018, 24 (10) : 7461 - 7464
  • [5] An Opposition-based Self-adaptive Hybridized Differential Evolution Algorithm for Multi-objective Optimization (OSADE)
    Chong, Jin Kiat
    Tan, Kay Chen
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 1, 2015, : 447 - 461
  • [6] Multi-objective whale optimization algorithm for content-based image retrieval
    Abd El Aziz, Mohamed
    Ewees, Ahmed A.
    Hassanien, Aboul Ella
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (19) : 26135 - 26172
  • [7] Multi-objective Whale Optimization
    Kumawat, Ishwar Ram
    Nanda, Satyasai Jagannath
    Maddila, Ravi Kumar
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 2747 - 2752
  • [8] Enhancing Dynamic Multi-objective Optimization Using Opposition-based Learning and Simulated Annealing
    Ilyas, Kiran
    Younas, Irfan
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2023, 32 (04)
  • [9] A novel multi-objective memetic algorithm based on opposition-based self-adaptive differential evolution
    J. K. Chong
    Memetic Computing, 2016, 8 : 147 - 165
  • [10] A novel multi-objective memetic algorithm based on opposition-based self-adaptive differential evolution
    Chong, J. K.
    MEMETIC COMPUTING, 2016, 8 (02) : 147 - 165