Opposition-based multi-objective whale optimization algorithm with multi-leader guiding

被引:7
作者
Li, Yang [1 ]
Li, Wei-gang [1 ]
Zhao, Yun-tao [1 ]
Liu, Ao [2 ]
机构
[1] Minist Educ, Engn Res Ctr Met Automat & Measurement Technol, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Evergrande Management, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-objective optimization problems; Whale optimization algorithm; Multi-leader guiding; Opposition-based learning strategy; DIFFERENTIAL EVOLUTION; OBJECTIVES; DIVERSITY;
D O I
10.1007/s00500-021-06390-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
During recent decades, evolutionary algorithms have been widely studied in optimization problems. The multi-objective whale optimization algorithm based on multi-leader guiding is proposed in this paper, which attempts to offer a proper framework to apply whale optimization algorithm and other swarm intelligence algorithms to solving multi-objective optimization problems. The proposed algorithm adopts several improvements to enhance optimization performance. First, search agents are classified into leadership set and ordinary set by grid mechanism, and multiple leadership solutions guide the population to search the sparse spaces to achieve more homogeneous exploration in per iteration. Second, the differential evolution and whale optimization algorithm are employed to generate the offspring for the leadership and ordinary solutions, respectively. In addition, a novel opposition-based learning strategy is developed to improve the distribution of the initial population. The performance of the proposed algorithm is verified in contrast to 10 classic or state-of-the-arts algorithms on 20 bi-objective and tri-objective unconstrained problems, and experimental results demonstrate the competitive advantages in optimization quality and convergence speed. Moreover, it is tested on load distribution of hot rolling, and the result proves its good performance in real-world applications. Thus, all of the aforementioned experiments have indicated that the proposed algorithm is comparatively effective and efficient.
引用
收藏
页码:15131 / 15161
页数:31
相关论文
共 37 条
[1]   HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization [J].
Bader, Johannes ;
Zitzler, Eckart .
EVOLUTIONARY COMPUTATION, 2011, 19 (01) :45-76
[2]   Solving Constrained Trajectory Planning Problems Using Biased Particle Swarm Optimization [J].
Chai, Runqi ;
Tsourdos, Antonios ;
Savvaris, A. L. ;
Chai, Senchun ;
Xia, Yuanqing .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (03) :1685-1701
[3]   Multiobjective Overtaking Maneuver Planning for Autonomous Ground Vehicles [J].
Chai, Runqi ;
Tsourdos, Antonios ;
Al Savvaris ;
Chai, Senchun ;
Xia, Yuanqing ;
Chen, C. L. Philip .
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (08) :4035-4049
[4]   Solving Multiobjective Constrained Trajectory Optimization Problem by an Extended Evolutionary Algorithm [J].
Chai, Runqi ;
Savvaris, Al ;
Tsourdos, Antonios ;
Xia, Yuanqing ;
Chai, Senchun .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (04) :1630-1643
[5]   Multi-objective trajectory optimization of Space Manoeuvre Vehicle using adaptive differential evolution and modified game theory [J].
Chai, Runqi ;
Savvaris, Al ;
Tsourdos, Antonios ;
Chai, Senchun .
ACTA ASTRONAUTICA, 2017, 136 :273-280
[6]   A novel hybrid teaching learning based multi-objective particle swarm optimization [J].
Cheng, Tingli ;
Chen, Minyou ;
Fleming, Peter J. ;
Yang, Zhile ;
Gan, Shaojun .
NEUROCOMPUTING, 2017, 222 :11-25
[7]   Handling multiple objectives with particle swarm optimization [J].
Coello, CAC ;
Pulido, GT ;
Lechuga, MS .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) :256-279
[8]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[9]   An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints [J].
Deb, Kalyanmoy ;
Jain, Himanshu .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (04) :577-601
[10]  
FONSECA CM, 1993, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P416