The Rapid Reddening and Featureless Optical Spectra of the Optical Counterpart of GW170817, AT 2017gfo, during the First Four Days

被引:120
作者
McCully, Curtis [1 ,2 ]
Hiramatsu, Daichi [1 ,2 ]
Howell, D. Andrew [1 ,2 ]
Hosseinzadeh, Griffin [1 ,2 ]
Arcavi, Iair [1 ,2 ]
Kasen, Daniel [3 ,4 ,5 ,6 ]
Barnes, Jennifer [7 ]
Shara, Michael M. [8 ,9 ]
Williams, Ted B. [10 ]
Vaisanen, Petri [10 ,11 ]
Potter, Stephen B. [10 ]
Romero-Colmenero, Encarni [10 ,11 ]
Crawford, Steven M. [10 ,11 ]
Buckley, David A. H. [10 ,11 ]
Cooke, Jeffery [12 ,13 ,14 ]
Andreoni, Igor [12 ,14 ,15 ]
Pritchard, Tyler A. [12 ]
Mao, Jirong [16 ,17 ,18 ]
Gromadzki, Mariusz [19 ]
Burke, Jamison [1 ,2 ]
机构
[1] Cumbres Observ, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA
[6] Lawrence Berkeley Natl Lab, Nucl Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[7] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA
[8] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West & 79th St, New York, NY 10024 USA
[9] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England
[10] South African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa
[11] Southern African Large Telescope Fdn, POB 9, ZA-7935 Cape Town, South Africa
[12] Swinburne Univ Technol, Ctr Astrophys & Supercomp, POB 218,H29, Hawthorn, Vic 3122, Australia
[13] Australian Res Council, Ctr Excellence All Sky Astrophys CAASTRO, Canberra, ACT, Australia
[14] Australian Res Council, Ctr Excellence Gravitat Wave Discovery OzGrav, Canberra, ACT, Australia
[15] Australian Astron Observ, 105 Delhi Rd, N Ryde, NSW 2113, Australia
[16] Chinese Acad Sci, Yunnan Observ, Kunming 650011, Yunnan, Peoples R China
[17] Chinese Acad Sci, Ctr Astron Mega Sci, 20A Datun Rd, Beijing 100012, Peoples R China
[18] Chinese Acad Sci, Key Lab Struct & Evolut Celestial Objects, Kunming 650011, Yunnan, Peoples R China
[19] Warsaw Univ, Astron Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland
基金
中国国家自然科学基金; 澳大利亚研究理事会; 新加坡国家研究基金会; 美国国家航空航天局;
关键词
binaries: close; gamma-ray burst: individual (GRB 170817A; GRB; 130603B); gravitational waves; stars: neutron; stars:; winds; outflows; COMPACT OBJECT MERGERS; MASS EJECTION; LIGHT CURVES; MACRONOVA;
D O I
10.3847/2041-8213/aa9111
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the spectroscopic evolution of AT 2017gfo, the optical counterpart of the first binary neutron star (BNS) merger detected by LIGO and Virgo, GW170817. While models have long predicted that a BNS merger could produce a kilonova (KN), we have not been able to definitively test these models until now. From one day to four days after the merger, we took five spectra of AT 2017gfo before it faded away, which was possible because it was at a distance of only 39.5 Mpc in the galaxy NGC 4993. The spectra evolve from blue (similar to 6400 K) to red (similar to 3500 K) over the three days we observed. The spectra are relatively featureless-some weak features exist in our latest spectrum, but they are likely due to the host galaxy. However, a simple blackbody is not sufficient to explain our data: another source of luminosity or opacity is necessary. Predictions from simulations of KNe qualitatively match the observed spectroscopic evolution after two days past the merger, but underpredict the blue flux in our earliest spectrum. From our best-fit models, we infer that AT 2017gfo had an ejecta mass of 0.03 M-circle dot high ejecta velocities of 0.3c, and a low mass fraction similar to 10(-4) of high-opacity lanthanides and actinides. One possible explanation for the early excess of blue flux is that the outer ejecta is lanthanide-poor, while the inner ejecta has a higher abundance of high-opacity material. With the discovery and follow-up of this unique transient, combining gravitational-wave and electromagnetic astronomy, we have arrived in the multi-messenger era.
引用
收藏
页数:8
相关论文
共 67 条
  • [1] Advanced LIGO
    Aasi, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T.
    Abernathy, M. R.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V.
    Affeldt, C.
    Aggarwal, N.
    Aguiar, O. D.
    Ain, A.
    Ajith, P.
    Alemic, A.
    Allen, B.
    Amariutei, D.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C.
    Areeda, J. S.
    Ashton, G.
    Ast, S.
    Aston, S. M.
    Aufmuth, P.
    Aulbert, C.
    Aylott, B. E.
    Babak, S.
    Baker, P. T.
    Ballmer, S. W.
    Barayoga, J. C.
    Barbet, M.
    Barclay, S.
    Barish, B. C.
    Barker, D.
    Barr, B.
    Barsotti, L.
    Bartlett, J.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Batch, J. C.
    Baune, C.
    Behnke, B.
    Bell, A. S.
    Bell, C.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (07)
  • [2] ABBOTT BP, 2017, APJL
  • [3] Acernese F., 2014, Class. Quant. Grav., V32, DOI DOI 10.1088/0264-9381/32/2/024001
  • [4] [Anonymous], 2017, APJL
  • [5] [Anonymous], 2017, GCN
  • [6] [Anonymous], GCN
  • [7] [Anonymous], 2017, GCN
  • [8] [Anonymous], ARXIV170809101
  • [9] Arcavi I., 2017, APJL
  • [10] Arcavi I., 2017, GCN, P21538