A cell-free nanobody engineering platform rapidly generates SARS-CoV-2 neutralizing nanobodies

被引:55
作者
Chen, Xun [1 ]
Gentili, Matteo [2 ]
Hacohen, Nir [2 ,3 ,4 ]
Regev, Aviv [1 ,5 ,6 ,7 ]
机构
[1] Broad Inst MIT & Harvard, Klarman Cell Observ, Cambridge, MA 02142 USA
[2] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[3] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[4] Massachusetts Gen Hosp, Ctr Canc Res, Boston, MA 02114 USA
[5] MIT, Dept Biol, Cambridge, MA 02139 USA
[6] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
[7] Genentech Inc, 1 DNA Way, San Francisco, CA 94080 USA
关键词
YEAST SURFACE DISPLAY; ANTIBODIES; DOMAIN;
D O I
10.1038/s41467-021-25777-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Antibody engineering technologies face increasing demands for speed, reliability and scale. We develop CeVICA, a cell-free nanobody engineering platform that uses ribosome display for in vitro selection of nanobodies from a library of 10(11) randomized sequences. We apply CeVICA to engineer nanobodies against the Receptor Binding Domain (RBD) of SARS-CoV-2 spike protein and identify >800 binder families using a computational pipeline based on CDR-directed clustering. Among 38 experimentally-tested families, 30 are true RBD binders and 11 inhibit SARS-CoV-2 pseudotyped virus infection. Affinity maturation and multivalency engineering increase nanobody binding affinity and yield a virus neutralizer with picomolar IC50. Furthermore, the capability of CeVICA for comprehensive binder prediction allows us to validate the fitness of our nanobody library. CeVICA offers an integrated solution for rapid generation of divergent synthetic nanobodies with tunable affinities in vitro and may serve as the basis for automated and highly parallel nanobody engineering. Faster, higher throughput antibody engineering methods are needed. Here the authors present CeVICA, a cell-free nanobody engineering platform using ribosome display and computational clustering analysis for in vitro selection; they use this to develop nanobodies against the RBD of SARS-CoV-2 spike protein.
引用
收藏
页数:14
相关论文
共 30 条
  • [1] Yeast surface display for screening combinatorial polypeptide libraries
    Boder, ET
    Wittrup, KD
    [J]. NATURE BIOTECHNOLOGY, 1997, 15 (06) : 553 - 557
  • [2] Beyond natural antibodies: the power of in vitro display technologies
    Bradbury, Andrew R. M.
    Sidhu, Sachdev
    Duebel, Stefan
    McCafferty, John
    [J]. NATURE BIOTECHNOLOGY, 2011, 29 (03) : 245 - 254
  • [3] Generating recombinant antibodies to the complete human proteome
    Duebel, Stefan
    Stoevesandt, Oda
    Taussig, Michael J.
    Hust, Michael
    [J]. TRENDS IN BIOTECHNOLOGY, 2010, 28 (07) : 333 - 339
  • [4] Engineered peptide barcodes for in-depth analyses of binding protein libraries
    Egloff, Pascal
    Zimmermann, Iwan
    Arnold, Fabian M.
    Hutter, Cedric A. J.
    Morger, Damien
    Opitz, Lennart
    Poveda, Lucy
    Keserue, Hans-Anton
    Panse, Christian
    Roschitzki, Bernd
    Seeger, Markus A.
    [J]. NATURE METHODS, 2019, 16 (05) : 421 - +
  • [5] Transmission of innate immune signaling by packaging of cGAMP in viral particles
    Gentili, Matteo
    Kowal, Joanna
    Tkach, Mercedes
    Satoh, Takeshi
    Lahaye, Xavier
    Conrad, Cecile
    Boyron, Marilyn
    Lombard, Berangere
    Durand, Sylvere
    Kroemer, Guido
    Loew, Damarys
    Dalod, Marc
    Thery, Clotilde
    Manel, Nicolas
    [J]. SCIENCE, 2015, 349 (6253) : 1232 - 1236
  • [6] Animal-derived-antibody generation faces strict reform in accordance with European Union policy on animal use
    Gray, Alison C.
    Bradbury, Andrew R. M.
    Knappik, Achim
    Pluckthun, Andreas
    Borrebaeck, Carl A. K.
    Duebel, Stefan
    [J]. NATURE METHODS, 2020, 17 (08) : 755 - 756
  • [7] In vitro selection and evolution of functional proteins by using ribosome display
    Hanes, J
    Pluckthun, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) : 4937 - 4942
  • [8] Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display
    Hanes, J
    Schaffitzel, C
    Knappik, A
    Plückthun, A
    [J]. NATURE BIOTECHNOLOGY, 2000, 18 (12) : 1287 - 1292
  • [9] An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction
    Hanke, Leo
    Perez, Laura Vidakovics
    Sheward, Daniel J.
    Das, Hrishikesh
    Schulte, Tim
    Moliner-Morro, Ainhoa
    Corcoran, Martin
    Achour, Adnane
    Hedestam, Gunilla B. Karlsson
    Haellberg, B. Martin
    Murrell, Ben
    McInerney, Gerald M.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [10] Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail
    Hansen, Johanna
    Baum, Alina
    Pascal, Kristen E.
    Russo, Vincenzo
    Giordano, Stephanie
    Wloga, Elzbieta
    Fulton, Benjamin O.
    Yan, Ying
    Koon, Katrina
    Patel, Krunal
    Chung, Kyung Min
    Hermann, Aynur
    Ullman, Erica
    Cruz, Jonathan
    Rafique, Ashique
    Huang, Tammy
    Fairhurst, Jeanette
    Libertiny, Christen
    Malbec, Marine
    Lee, Wen-yi
    Welsh, Richard
    Farr, Glen
    Pennington, Seth
    Deshpande, Dipali
    Cheng, Jemmie
    Watty, Anke
    Bouffard, Pascal
    Babb, Robert
    Levenkova, Natasha
    Chen, Calvin
    Zhang, Bojie
    Hernandez, Annabel Romero
    Saotome, Kei
    Zhou, Yi
    Franklin, Matthew
    Sivapalasingam, Sumathi
    Lye, David Chien
    Weston, Stuart
    Logue, James
    Haupt, Robert
    Frieman, Matthew
    Chen, Gang
    Olson, William
    Murphy, Andrew J.
    Stahl, Neil
    Yancopoulos, George D.
    Kyratsous, Christos A.
    [J]. SCIENCE, 2020, 369 (6506) : 1010 - +