A cell-free nanobody engineering platform rapidly generates SARS-CoV-2 neutralizing nanobodies

被引:59
作者
Chen, Xun [1 ]
Gentili, Matteo [2 ]
Hacohen, Nir [2 ,3 ,4 ]
Regev, Aviv [1 ,5 ,6 ,7 ]
机构
[1] Broad Inst MIT & Harvard, Klarman Cell Observ, Cambridge, MA 02142 USA
[2] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[3] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[4] Massachusetts Gen Hosp, Ctr Canc Res, Boston, MA 02114 USA
[5] MIT, Dept Biol, Cambridge, MA 02139 USA
[6] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
[7] Genentech Inc, 1 DNA Way, San Francisco, CA 94080 USA
关键词
YEAST SURFACE DISPLAY; ANTIBODIES; DOMAIN;
D O I
10.1038/s41467-021-25777-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Antibody engineering technologies face increasing demands for speed, reliability and scale. We develop CeVICA, a cell-free nanobody engineering platform that uses ribosome display for in vitro selection of nanobodies from a library of 10(11) randomized sequences. We apply CeVICA to engineer nanobodies against the Receptor Binding Domain (RBD) of SARS-CoV-2 spike protein and identify >800 binder families using a computational pipeline based on CDR-directed clustering. Among 38 experimentally-tested families, 30 are true RBD binders and 11 inhibit SARS-CoV-2 pseudotyped virus infection. Affinity maturation and multivalency engineering increase nanobody binding affinity and yield a virus neutralizer with picomolar IC50. Furthermore, the capability of CeVICA for comprehensive binder prediction allows us to validate the fitness of our nanobody library. CeVICA offers an integrated solution for rapid generation of divergent synthetic nanobodies with tunable affinities in vitro and may serve as the basis for automated and highly parallel nanobody engineering. Faster, higher throughput antibody engineering methods are needed. Here the authors present CeVICA, a cell-free nanobody engineering platform using ribosome display and computational clustering analysis for in vitro selection; they use this to develop nanobodies against the RBD of SARS-CoV-2 spike protein.
引用
收藏
页数:14
相关论文
共 30 条
[1]   Yeast surface display for screening combinatorial polypeptide libraries [J].
Boder, ET ;
Wittrup, KD .
NATURE BIOTECHNOLOGY, 1997, 15 (06) :553-557
[2]   Beyond natural antibodies: the power of in vitro display technologies [J].
Bradbury, Andrew R. M. ;
Sidhu, Sachdev ;
Duebel, Stefan ;
McCafferty, John .
NATURE BIOTECHNOLOGY, 2011, 29 (03) :245-254
[3]   Generating recombinant antibodies to the complete human proteome [J].
Duebel, Stefan ;
Stoevesandt, Oda ;
Taussig, Michael J. ;
Hust, Michael .
TRENDS IN BIOTECHNOLOGY, 2010, 28 (07) :333-339
[4]   Engineered peptide barcodes for in-depth analyses of binding protein libraries [J].
Egloff, Pascal ;
Zimmermann, Iwan ;
Arnold, Fabian M. ;
Hutter, Cedric A. J. ;
Morger, Damien ;
Opitz, Lennart ;
Poveda, Lucy ;
Keserue, Hans-Anton ;
Panse, Christian ;
Roschitzki, Bernd ;
Seeger, Markus A. .
NATURE METHODS, 2019, 16 (05) :421-+
[5]   Transmission of innate immune signaling by packaging of cGAMP in viral particles [J].
Gentili, Matteo ;
Kowal, Joanna ;
Tkach, Mercedes ;
Satoh, Takeshi ;
Lahaye, Xavier ;
Conrad, Cecile ;
Boyron, Marilyn ;
Lombard, Berangere ;
Durand, Sylvere ;
Kroemer, Guido ;
Loew, Damarys ;
Dalod, Marc ;
Thery, Clotilde ;
Manel, Nicolas .
SCIENCE, 2015, 349 (6253) :1232-1236
[6]   Animal-derived-antibody generation faces strict reform in accordance with European Union policy on animal use [J].
Gray, Alison C. ;
Bradbury, Andrew R. M. ;
Knappik, Achim ;
Pluckthun, Andreas ;
Borrebaeck, Carl A. K. ;
Duebel, Stefan .
NATURE METHODS, 2020, 17 (08) :755-756
[7]   In vitro selection and evolution of functional proteins by using ribosome display [J].
Hanes, J ;
Pluckthun, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :4937-4942
[8]   Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display [J].
Hanes, J ;
Schaffitzel, C ;
Knappik, A ;
Plückthun, A .
NATURE BIOTECHNOLOGY, 2000, 18 (12) :1287-1292
[9]   An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction [J].
Hanke, Leo ;
Perez, Laura Vidakovics ;
Sheward, Daniel J. ;
Das, Hrishikesh ;
Schulte, Tim ;
Moliner-Morro, Ainhoa ;
Corcoran, Martin ;
Achour, Adnane ;
Hedestam, Gunilla B. Karlsson ;
Haellberg, B. Martin ;
Murrell, Ben ;
McInerney, Gerald M. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail [J].
Hansen, Johanna ;
Baum, Alina ;
Pascal, Kristen E. ;
Russo, Vincenzo ;
Giordano, Stephanie ;
Wloga, Elzbieta ;
Fulton, Benjamin O. ;
Yan, Ying ;
Koon, Katrina ;
Patel, Krunal ;
Chung, Kyung Min ;
Hermann, Aynur ;
Ullman, Erica ;
Cruz, Jonathan ;
Rafique, Ashique ;
Huang, Tammy ;
Fairhurst, Jeanette ;
Libertiny, Christen ;
Malbec, Marine ;
Lee, Wen-yi ;
Welsh, Richard ;
Farr, Glen ;
Pennington, Seth ;
Deshpande, Dipali ;
Cheng, Jemmie ;
Watty, Anke ;
Bouffard, Pascal ;
Babb, Robert ;
Levenkova, Natasha ;
Chen, Calvin ;
Zhang, Bojie ;
Hernandez, Annabel Romero ;
Saotome, Kei ;
Zhou, Yi ;
Franklin, Matthew ;
Sivapalasingam, Sumathi ;
Lye, David Chien ;
Weston, Stuart ;
Logue, James ;
Haupt, Robert ;
Frieman, Matthew ;
Chen, Gang ;
Olson, William ;
Murphy, Andrew J. ;
Stahl, Neil ;
Yancopoulos, George D. ;
Kyratsous, Christos A. .
SCIENCE, 2020, 369 (6506) :1010-+