Quaternionic monopoles

被引:23
作者
Okonek, C [1 ]
Teleman, A [1 ]
机构
[1] UNIV BUCHAREST,DEPT MATH,BUCHAREST,ROMANIA
关键词
D O I
10.1007/BF02099718
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the simplest non-abelian version of Seiberg-Witten theory: Quaternionic monopoles. These monopoles are associated with Spin(h)(4)-structures on 4-manifolds and form finite-dimensional moduli spaces. On a Kahler surface the quaternionic monopole equations decouple and lead to the projective vortex equation for holomorphic pairs. This vortex equation comes from a moment map and gives rise to a new complex-geometric stability concept. The moduli spaces of quaternionic monopoles on Kahler surfaces have two closed subspaces, both naturally isomorphic with moduli spaces of canonically stable holomorphic pairs. These components intersect along a Donaldson instanton space and can be compactified with Seiberg-Witten moduli spaces. This should provide a link between the two corresponding theories.
引用
收藏
页码:363 / 388
页数:26
相关论文
共 23 条
[1]  
[Anonymous], 1984, INSTANTONS 4 MANIFOL
[2]   VORTICES IN HOLOMORPHIC LINE BUNDLES OVER CLOSED KAHLER-MANIFOLDS [J].
BRADLOW, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 135 (01) :1-17
[3]  
BRADLOW SB, 1991, J DIFFER GEOM, V33, P169
[4]  
Donaldon S.K., 1990, OXFORD MATH MONOGRAP
[5]  
Donaldson S.K., 1985, P LOND MATH SOC, V3, P1
[6]   BIRATIONAL EQUIVALENCE IN THE SYMPLECTIC CATEGORY [J].
GUILLEMIN, V ;
STERNBERG, S .
INVENTIONES MATHEMATICAE, 1989, 97 (03) :485-522
[7]  
HIRZEBRUCH F, 1958, MATH ANN, V136
[8]   HARMONIC SPINORS [J].
HITCHIN, N .
ADVANCES IN MATHEMATICS, 1974, 14 (01) :1-55
[9]  
JOST J, 1995, DGGA9504003
[10]  
Kobayashi S., 1987, DIFFERENTIAL GEOMETR