Illuminating solid gas storage in confined spaces - methane hydrate formation in porous model carbons

被引:82
作者
Borchardt, Lars [1 ]
Nickel, Winfried [1 ]
Casco, Mirian [2 ]
Senkovska, Irena [1 ]
Bon, Volodymyr [1 ]
Wallacher, Dirk [3 ]
Grimm, Nico [3 ]
Krause, Simon [1 ]
Silvestre-Albero, Joaquin [2 ]
机构
[1] Tech Univ Dresden, Inst Inorgan Chem, Bergstr 66, D-01069 Dresden, Germany
[2] Univ Alicante, IUMA, Lab Mat Avanzados, Ctra San Vicente del Raspeig Alicante S-N, E-03690 San Vicente Del Raspeig, Spain
[3] Helmholtz Zentrum Berlin Mat & Energie, Dept Sample Environm, Berlin, Germany
关键词
ACTIVATED CARBONS; DISSOCIATION; MICROPOROSITY; TEMPERATURES; NANOSPACE; KINETICS; PORES; DRY;
D O I
10.1039/c6cp03993f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methane hydrate nucleation and growth in porous model carbon materials illuminates the way towards the design of an optimized solid-based methane storage technology. High-pressure methane adsorption studies on pre-humidified carbons with well-defined and uniform porosity show that methane hydrate formation in confined nanospace can take place at relatively low pressures, even below 3 MPa CH4, depending on the pore size and the adsorption temperature. The methane hydrate nucleation and growth is highly promoted at temperatures below the water freezing point, due to the lower activation energy in ice vs. liquid water. The methane storage capacity via hydrate formation increases with an increase in the pore size up to an optimum value for the 25 nm pore size model-carbon, with a 173% improvement in the adsorption capacity as compared to the dry sample. Synchrotron X-ray powder diffraction measurements (SXRPD) confirm the formation of methane hydrates with a sI structure, in close agreement with natural hydrates. Furthermore, SXRPD data anticipate a certain contraction of the unit cell parameter for methane hydrates grown in small pores.
引用
收藏
页码:20607 / 20614
页数:8
相关论文
共 28 条
[1]  
[Anonymous], CLATHRATE HYDRATES N
[2]   Tailoring porosity in carbon materials for supercapacitor applications [J].
Borchardt, L. ;
Oschatz, M. ;
Kaskel, S. .
MATERIALS HORIZONS, 2014, 1 (02) :157-168
[3]   Paving the way for methane hydrate formation on metal-organic frameworks (MOFs) [J].
Casco, Mirian E. ;
Rey, Fernando ;
Jorda, Jose L. ;
Rudic, Svemir ;
Fauth, Francois ;
Martinez-Escandell, Manuel ;
Rodriguez-Reinoso, Francisco ;
Ramos-Fernandez, Enrique V. ;
Silvestre-Albero, Joaquin .
CHEMICAL SCIENCE, 2016, 7 (06) :3658-3666
[4]   Methane hydrate formation in confined nanospace can surpass nature [J].
Casco, Mirian E. ;
Silvestre-Albero, Joaquin ;
Ramirez-Cuesta, Anibal J. ;
Rey, Fernando ;
Jorda, Jose L. ;
Bansode, Atul ;
Urakawa, Atsushi ;
Peral, Inma ;
Martinez-Escandell, Manuel ;
Kaneko, Katsumi ;
Rodriguez-Reinoso, Francisco .
NATURE COMMUNICATIONS, 2015, 6
[5]   Optimal wetting of active carbons for methane hydrate formation [J].
Celzard, A ;
Marêché, JF .
FUEL, 2006, 85 (7-8) :957-966
[6]   THE SORPTION OF WATER VAPOUR BY ACTIVE CARBON [J].
DUBININ, MM ;
ZAVERINA, ED ;
SERPINSKY, VV .
JOURNAL OF THE CHEMICAL SOCIETY, 1955, :1760-1766
[7]   Kinetics of CO2-Hydrate Formation from Ice Powders: Data Summary and Modeling Extended to Low Temperatures [J].
Falenty, A. ;
Salamatin, A. N. ;
Kuhs, W. F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (16) :8443-8457
[8]   THERMODYNAMIC PROPERTIES AND DISSOCIATION CHARACTERISTICS OF METHANE AND PROPANE HYDRATES IN 70-ANGSTROM-RADIUS SILICA-GEL PORES [J].
HANDA, YP ;
STUPIN, D .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (21) :8599-8603
[9]   Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit [J].
Hansen, T. C. ;
Falenty, A. ;
Kuhs, W. F. .
JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (05)
[10]   AN ORDERED WATER MOLECULAR ASSEMBLY STRUCTURE IN A SLIT-SHAPED CARBON NANOSPACE [J].
IIYAMA, T ;
NISHIKAWA, K ;
OTOWA, T ;
KANEKO, K .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (25) :10075-10076