Machine Learning for Android Scareware Detection

被引:3
|
作者
Bagui, Sikha [1 ]
Brock, Hunter [2 ]
机构
[1] Univ West Florida, Dept Comp Sci, Pensacola, FL 32514 USA
[2] Univ West Florida, Comp Sci, Pensacola, FL USA
关键词
Android Malware; Decision Tree Classification; Information Gain; Intrusion Detection Systems; Malware Detection; Scareware;
D O I
10.4018/JITR.298326
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the steady rise in the use of smartphones, specifically Android smartphones, there is an ongoing need to build strong intrusion detection systems to protect ourselves from malicious software attacks. This work focuses on a sub-group of android malware, scareware. The novelty of this work lies in being able to detect the various scareware families individually using a small number of network attributes, determined by a recursive feature elimination process based on information gain. No work has yet been done on analyzing the scareware families individually. Results of this work show that the number of bytes initially sent back and forth, packet size, amount of time between flows and flow duration are the most important attributes that would be needed to classify a scareware attack. Three classifiers, Decision Tree, Naive Bayes, and OneR, were used for classification. The highest average classification accuracy (79.5%) was achieved by the Decision Tree classifier with a minimum of 44 attributes.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Android Malware Detection Using Machine Learning
    Droos, Ayat
    Al-Mahadeen, Awss
    Al-Harasis, Tasnim
    Al-Attar, Rama
    Ababneh, Mohammad
    2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 36 - 41
  • [2] An Android Malware Detection Leveraging Machine Learning
    Shatnawi, Ahmed S.
    Jaradat, Aya
    Yaseen, Tuqa Bani
    Taqieddin, Eyad
    Al-Ayyoub, Mahmoud
    Mustafa, Dheya
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [3] Android botnet detection using machine learning
    Rasheed M.M.
    Faieq A.K.
    Hashim A.A.
    Rasheed, Mohammad M. (mohammad.rasheed@uoitc.edu.iq), 1600, International Information and Engineering Technology Association (25): : 127 - 130
  • [4] Android Malware Detection Based on Machine Learning
    Wang, Qing-Fei
    Fang, Xiang
    2018 4TH ANNUAL INTERNATIONAL CONFERENCE ON NETWORK AND INFORMATION SYSTEMS FOR COMPUTERS (ICNISC 2018), 2018, : 434 - 436
  • [5] Application of Machine Learning Algorithms for Android Malware Detection
    Kakavand, Mohsen
    Dabbagh, Mohammad
    Dehghantanha, Ali
    2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS (CIIS 2018), 2018, : 32 - 36
  • [6] Malware Detection Using Machine Learning Algorithms in Android
    Sri, Kovvuri Ramya
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 561 - 568
  • [7] Explainable Machine Learning for Malware Detection on Android Applications
    Palma, Catarina
    Ferreira, Artur
    Figueiredo, Mario
    INFORMATION, 2024, 15 (01)
  • [8] An Android Malware Detection System Based on Machine Learning
    Wen, Long
    Yu, Haiyang
    GREEN ENERGY AND SUSTAINABLE DEVELOPMENT I, 2017, 1864
  • [9] Android Malware Detection Using Machine Learning: A Review
    Chowdhury, Naseef-Ur-Rahman
    Haque, Ahshanul
    Soliman, Hamdy
    Hossen, Mohammad Sahinur
    Fatima, Tanjim
    Ahmed, Imtiaz
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023, 2024, 824 : 507 - 522
  • [10] Android Malware Detection Using Machine Learning Technique
    Sabri, Nor ‘Afifah
    Khamis, Shakiroh
    Zainudin, Zanariah
    Lecture Notes on Data Engineering and Communications Technologies, 2024, 211 : 153 - 164