Enhancing Photonic Spin Hall Effect in the Surface Plasmon Resonance Structure Covered by the Graphene-MoS2 Heterostructure

被引:19
作者
Wang, Qingkai [1 ,2 ]
Jiang, Xing [1 ]
Wang, Xi [1 ]
Dai, Xiaoyu [1 ]
Xiang, Yuanjiang [1 ]
机构
[1] Shenzhen Univ, SZU NUS Collaborat Innovat Ctr Optoelect Sci & Te, Guangdong Engn Technol Res Ctr Mat Informat Funct, Coll Optoelect Engn, Shenzhen 518060, Peoples R China
[2] Jiujiang Univ, Coll Sci, Key Lab Microstruct Funct Mat Jiangxi Prov, Jiujiang 332005, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2017年 / 9卷 / 06期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Photonic spin Hall effect; spin-dependent splitting; two-dimensional nanomaterials; heterostructure; LIGHT;
D O I
10.1109/JPHOT.2017.2761989
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the weak spin-orbit interaction, the photonic spin Hall effect (SHE) is generally very weak, which is disadvantageous for potential applications of nanophotonic devices. Surface plasmon resonance (SPR) has been proposed to enhance the photonic SHE. In this paper, by covering the heterostructure material composed of graphene and molybdenum sulfide (MoS2) on the SPR structure, it is demonstrated that the two-dimensional (2-D) material heterostructure can effectively enhance the photonic SHE. The transverse shift of light beam in the heterostructure is larger than those in SPR structure due to the larger refractive index gradient in the heterostructure. The maximum transverse shift can be up to 27.5 mu m under the optimized parameters, which is much larger than the previously reported values. This interesting phenomenon is attributed to the larger light absorption and hence the refractive index variation gradient of graphene/MoS2 heterostructure. These findings provide us with a new way to modulate the photonic SHE, and also establish foundation for developing nanophotonic devices based on 2-D nanomaterials heterostructure.
引用
收藏
页数:10
相关论文
共 24 条
[1]   Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices [J].
Bao, Qiaoliang ;
Loh, Kian Ping .
ACS NANO, 2012, 6 (05) :3677-3694
[2]   Spin-orbit interactions of light [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Nori, F. ;
Zayats, A. V. .
NATURE PHOTONICS, 2015, 9 (12) :796-808
[3]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[4]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[5]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425
[6]   Observation of the spin Hall effect of light via weak measurements [J].
Hosten, Onur ;
Kwiat, Paul .
SCIENCE, 2008, 319 (5864) :787-790
[7]   Electrically Tunable Goos-Hanchen Shift of Light Beam Reflected From a Graphene-on-Dielectric Surface [J].
Jiang, Leyong ;
Wang, Qingkai ;
Xiang, Yuanjiang ;
Dai, Xiaoyu ;
Wen, Shuangchun .
IEEE PHOTONICS JOURNAL, 2013, 5 (03)
[8]   Observation of the spin hall effect in semiconductors [J].
Kato, YK ;
Myers, RC ;
Gossard, AC ;
Awschalom, DD .
SCIENCE, 2004, 306 (5703) :1910-1913
[9]   Improved Surface Enhanced Raman Scattering Based on Hybrid Au Nanostructures for Biomolecule Detection [J].
Li, Yang ;
Zhou, Long ;
Tang, Longhua ;
Li, Mingyu ;
He, Jian-Jun .
IEEE PHOTONICS JOURNAL, 2016, 8 (06)
[10]   Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect [J].
Ling, Xiaohui ;
Yi, Xunong ;
Zhou, Xinxing ;
Liu, Yachao ;
Shu, Weixing ;
Luo, Hailu ;
Wen, Shuangchun .
APPLIED PHYSICS LETTERS, 2014, 105 (15)