Using Deep Networks for Semantic Segmentation of Satellite Images

被引:2
作者
Selea, Teodora [1 ]
Neagul, Marian [1 ]
机构
[1] West Univ Timisoara, Fac Math & Informat, Timisoara, Romania
来源
2017 19TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2017) | 2017年
关键词
semantic segmentation; segnet; u-net; cnn; satellite image;
D O I
10.1109/SYNASC.2017.00074
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we aim to investigate different deep learning techniques for automatic extraction of valuable information from large sized satellite image data. We focus on the problem of semantic segmentation which attaches a class label to each pixel from the image. We investigate two semantic segmentation architectures based an convolutional neural networks: segnet and u-net. We analyse different tiling strides with reverse aggregation methods. We compare two classical methods (averaging and maximum) and propose a new method based on entropy. We test the models with distinct types of images, emphasizing the need to predict the results using information from all of them. We discuss various fusion strategies and introduce a fusion strategy based on the observations obtained from separately analysing the distinct image types.
引用
收藏
页码:409 / 415
页数:7
相关论文
共 15 条
[1]  
[Anonymous], 2016, CORR
[2]  
Audebert N., 2016, SEMANTIC SEGMENTATIO, V9
[3]  
Badrinarayanan V., 2016, ARXIV151100561
[4]  
Gerke M, 2015, USE STAIR VISION LIB
[5]  
He K., 2016, 2016 IEEE C COMPUTER
[6]  
Ioffe S, 2015, PR MACH LEARN RES, V37, P448
[7]  
LeCun Y., 1998, P IEEE, P2
[8]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[9]   Convolutional Oriented Boundaries [J].
Maninis, Kevis-Kokitsi ;
Pont-Tuset, Jordi ;
Arbelaez, Pablo ;
Van Gool, Luc .
COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 :580-596
[10]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241