Identification of Chemical Compounds by the Reflected Spectra in the Range of 5.3-12.8 μm Using a Tunable Quantum Cascade Laser

被引:11
作者
Golyak, I. S. [1 ]
Morozov, A. N. [1 ]
Svetlichnyi, S., I [2 ]
Tabalina, A. S. [1 ]
Fufurina, I. L. [1 ]
机构
[1] Bauman Moscow State Tech Univ, Moscow, Russia
[2] Russian Acad Sci, Branch Talrose Inst Energy Problems Chem Phys, Chernogolovka, Russia
基金
俄罗斯基础研究基金会;
关键词
infrared spectroscopy; identification; quantum cascade laser; Kramers-Kronig relations; CAUSALITY CALCULATIONS; TIME-DOMAIN;
D O I
10.1134/S1990793119040055
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
We have considered the technique and experimental laboratory setup that allow the recording of the specular and diffuse reflectance spectra of the infrared radiation of substances in solid and liquid aggregate states on various surfaces. A quantum cascade laser, tunable in the wavelength range of 5.3-12.8 mu m with a spectral resolution of 2 cm(-1) and an average power of 15 mW, was used as a probing radiation source. The experimental setup made it possible to record the spectra of the diffusely reflected radiation of the substances. Methods for the identification of substances based on the scattered radiation spectra are proposed. It is shown that the use of the Kramers-Kronig integral transform increases the degree of selectivity of the spectra and, as a consequence, the reliability of identification.
引用
收藏
页码:557 / 564
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 2012, US Patent, Patent No. [2012/0033220 A1, 20120033220]
[2]  
[Anonymous], 1992, 941191 GOST
[3]   High-performance superlattice quantum cascade lasers [J].
Capasso, F ;
Tredicucci, A ;
Gmachl, C ;
Sivco, DL ;
Hutchinson, AL ;
Cho, AY ;
Scamarcio, G .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999, 5 (03) :792-807
[4]   Active and passive infrared spectroscopy for the detection of environmental threats [J].
Deutsch, Erik R. ;
Kotidis, Petros ;
Zhu, Ninghui ;
Goyal, Anish K. ;
Ye, Jim ;
Mazurenko, Alex ;
Norman, Mark ;
Zafiriou, Kostas ;
Baier, Mark ;
Connors, Ray .
ADVANCED ENVIRONMENTAL, CHEMICAL, AND BIOLOGICAL SENSING TECHNOLOGIES XI, 2014, 9106
[5]   Real-time breath gas analysis of CO and CO2 using an EC-QCL [J].
Ghorbani, Ramin ;
Schmidt, Florian M. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2017, 123 (05)
[6]  
Golyak Ig. S., 2014, PRIB TEKH EKSP, P119
[7]   Sampling-Free Analysis of Chemical Compounds Using a Static Fourier-Transform Spectrometer [J].
Golyak, Il. S. ;
Esakov, A. A. ;
Vasil'ev, N. S. ;
Morozov, A. N. .
OPTICS AND SPECTROSCOPY, 2013, 115 (06) :884-888
[8]   Raman scattering in three-dimensional photonic crystals [J].
Gorelik, VS ;
Zlobina, LI ;
Sverbil', PP ;
Fadyushin, AB ;
Chervyakov, AV .
JOURNAL OF RUSSIAN LASER RESEARCH, 2005, 26 (03) :211-227
[9]   On the theory of absorption and dispersion in paramagnetic and dielectric media [J].
Gorter, CJ ;
Kronig, RDL .
PHYSICA, 1936, 3 :1009-1020
[10]   ANALYSIS OF REFLECTANCE DATA USING THE KRAMERS-KRONIG RELATIONS [J].
GROSSE, P ;
OFFERMANN, V .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1991, 52 (02) :138-144