Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation

被引:120
作者
Chen, Shou-Ting [1 ]
Ma, Wen-Xiu [2 ,3 ,4 ,5 ]
机构
[1] Xuzhou Inst Technol, Sch Math & Phys Sci, Xuzhou 221008, Jiangsu, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[4] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[5] North West Univ, Dept Math Sci, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
关键词
Symbolic computation; Lump solution; Soliton theory; INTEGRABLE SYMPLECTIC MAP; KINK SOLUTIONS; SYMMETRY;
D O I
10.1016/j.camwa.2018.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized Calogero-Bogoyavlenskii-Schiff equation is considered, and based on its Hirota bilinear form, a class of lump solutions is explicitly generated via symbolic computations with Maple, together with plots of a specific lump solution. The result enlarges the category of nonlinear partial differential equations which possess lump solutions. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1680 / 1685
页数:6
相关论文
共 43 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]  
[Anonymous], 2016, INT J MOD PHYS B, DOI DOI 10.1142/S021797921640018X
[3]  
Baker George A., 1996, Pade Approximants, V59
[4]   Relevant deformations in open string field theory: a simple solution for lumps [J].
Bonora, L. ;
Maccaferri, C. ;
Tolla, D. D. .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (11)
[5]   The Calogero-Bogoyavlenskii-Schiff equation in 2+1 dimensions [J].
Bruzón, MS ;
Gandarias, ML ;
Muriel, C ;
Ramírez, J ;
Saez, S ;
Romero, FR .
THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 137 (01) :1367-1377
[6]   The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation [J].
Dong, Huanhe ;
Zhang, Yong ;
Zhang, Xiaoen .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 36 :354-365
[7]   ARE ALL THE EQUATIONS OF THE KADOMTSEV-PETVIASHVILI HIERARCHY INTEGRABLE [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) :2848-2852
[8]   On the combinatorics of the Hirota D-operators [J].
Gilson, C ;
Lambert, F ;
Nimmo, J ;
Willox, R .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1945) :223-234
[9]   LUMP SOLUTIONS OF THE BKP EQUATION [J].
GILSON, CR ;
NIMMO, JJC .
PHYSICS LETTERS A, 1990, 147 (8-9) :472-476
[10]  
Harun-Or-Roshid, 2016, ARXIV161104478