Return-mapping algorithms for associative isotropic hardening plasticity using conic optimization

被引:17
作者
Bruno, Hugo [1 ]
Barros, Guilherme [1 ]
Menezes, Ivan F. M. [1 ]
Martha, Luiz Fernando [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Rua Marques de Sao Vicente 225, BR-22451900 Rio De Janeiro, RJ, Brazil
关键词
Return-Mapping algorithms; Elastoplastic analysis; Implicit Euler scheme; Conic programming; First-Order parameter derivatives; INTERIOR-POINT METHODS; VON-MISES PLASTICITY; BOUND LIMIT ANALYSIS; 2ND-ORDER CONE; INTEGRATION ALGORITHMS; SHAKEDOWN ANALYSIS; CONVERGENCE; STABILITY; ACCURACY;
D O I
10.1016/j.apm.2019.10.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a mathematical programming approach for elastoplastic constitutive initial value problems. Consideration of the associative plasticity and a linear isotropic hardening model allowed us to formulate the local discrete constitutive equations as conic programs. Specifically, we demonstrate that implicit return-mapping schemes for well-known yield criteria, such as the Rankine, von Mises, Tresca, Drucker-Prager, and Mohr-Coulomb criteria, can be expressed as second-order and semidefinite conic programs. Additionally, we propose a novel scheme for the numerical evaluation of the consistent elastoplastic tangent operator based on a first-order parameter derivative of the optimal solutions. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:724 / 748
页数:25
相关论文
共 63 条
[1]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[2]   INTERIOR-POINT METHODS IN SEMIDEFINITE PROGRAMMING WITH APPLICATIONS TO COMBINATORIAL OPTIMIZATION [J].
ALIZADEH, F .
SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (01) :13-51
[3]   On implementing a primal-dual interior-point method for conic quadratic optimization [J].
Andersen, ED ;
Roos, C ;
Terlaky, T .
MATHEMATICAL PROGRAMMING, 2003, 95 (02) :249-277
[4]   Computing limit loads by minimizing a sum of norms [J].
Andersen, KD ;
Christiansen, E ;
Overton, ML .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03) :1046-1062
[5]  
[Anonymous], SHAKEDOWN ANAL PLANE
[6]  
[Anonymous], COMPUTER METHOD ORDI
[7]  
[Anonymous], MOSEK INTERIOR POINT
[8]  
[Anonymous], 2013, INTERDISCIP APPL MAT, DOI DOI 10.1038/NCOMMS3134
[9]  
[Anonymous], TECHNICAL REPORT
[10]  
[Anonymous], KRONECKER PRODUCTS V