V2CTx MXene Artificial Solid Electrolyte Interphases toward Dendrite-Free Lithium Metal Anodes

被引:25
作者
Yao, Wei [1 ]
He, Shijie [1 ]
Xue, Youcai [1 ]
Zhang, Qinfang [1 ]
Wang, Jinshan [1 ]
He, Meng [1 ]
Xu, Jianguang [1 ]
Chen, Chi [2 ,3 ,4 ]
Xiao, Xu [5 ,6 ]
机构
[1] Yancheng Inst Technol, Sch Mat Sci & Engn, Yancheng 224051, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, CAS Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Fujian, Peoples R China
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fujian Prov Key Lab Nanomat, Fuzhou 350002, Fujian, Peoples R China
[4] Chinese Acad Sci, Xiamen Inst Rare Earth Mat, Haixi Inst, Xiamen 361021, Fujian, Peoples R China
[5] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, State Key Lab Elect Thin Film & Integrated Device, Chengdu 610054, Sichuan, Peoples R China
[6] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
V2CTx MXene; lithium-metal anodes; dendrite-free; theoretical calculations; deep stripping and plating; IN-SITU; LI-ION; BATTERIES; PERFORMANCE; TRANSITION; CAPACITY; LAYER; NUCLEATION; POINTS;
D O I
10.1021/acssuschemeng.1c03904
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The commercialization of lithium (Li)-metal batteries is severely stagnated by uncontrollable Li dendrite growth particularly under deep stripping/plating conditions. The solid electrolyte interphase (SEI) is a crucial component for lithium metal anodes (LMAs). Herein, we have demonstrated a V2CTx MXene artificial SEI for dendrite-free LMAs. The strong binding energy between Li adatoms and V2CTx facilitates uniform nucleation and guides horizontal Li growth, while the low diffusion energy barriers of Li adatoms on V2CTx enable fast electro-migration of Li+ ions. As a result, the use of the V2CTx artificial SEI enables the outstanding performances of the asymmetric half-cell, exhibiting a Coulombic efficiency (CE) of 96.3% after 180 cycles under deep stripping/plating conditions (4 mA h cm(-2) and 4 mA cm(-2)) and a superior rate performance with a CE of 96.9% up to 250 cycles at 10 mA cm(-2). Furthermore, the V2CTx-Li parallel to NCM811 full-cell shows a prominent capacity of 129.1 mA h g(-1) over 450 cycles in a carbonate-based electrolyte at 0.5 C. This work demonstrates V-based MXenes for high-performance LMBs under deep stripping/plating conditions.
引用
收藏
页码:9961 / 9969
页数:9
相关论文
共 68 条
[1]   Two-Dimensional Silicon/Carbon from Commercial Alloy and CO2 for Lithium Storage and Flexible Ti3C2Tx MXene-Based Lithium-Metal Batteries [J].
An, Yongling ;
Tian, Yuan ;
Zhang, Yuchan ;
Wei, Chuanliang ;
Tan, Liwen ;
Zhang, Chenghui ;
Cui, Naxin ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ACS NANO, 2020, 14 (12) :17574-17588
[2]   Porosity- and Graphitization-Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium-Metal Anode [J].
An, Yongling ;
Tian, Yuan ;
Wei, Hao ;
Xi, Baojuan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (09)
[3]   2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries [J].
Cha, Eunho ;
Patel, Mumukshu D. ;
Park, Juhong ;
Hwang, Jeongwoon ;
Prasad, Vish ;
Cho, Kyeongjae ;
Choi, Wonbong .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :337-+
[4]   Inter-layer-calated Thin Li Metal Electrode with Improved Battery Capacity Retention and Dendrite Suppression [J].
Chen, Xi ;
Shang, Mingwei ;
Niu, Junjie .
NANO LETTERS, 2020, 20 (04) :2639-2646
[5]   Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes [J].
Chen, Xiang ;
Chen, Xiao-Ru ;
Hou, Ting-Zheng ;
Li, Bo-Quan ;
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhang, Qiang .
SCIENCE ADVANCES, 2019, 5 (02)
[6]   Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode [J].
Choi, Sung Min ;
Kang, Ik Su ;
Sun, Yang-Kook ;
Song, Jung-Hoon ;
Chung, Seok-Mo ;
Kim, Dong-Won .
JOURNAL OF POWER SOURCES, 2013, 244 :363-368
[7]   Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries [J].
Fan, Xiulin ;
Chen, Long ;
Borodin, Oleg ;
Ji, Xiao ;
Chen, Ji ;
Hou, Singyuk ;
Deng, Tao ;
Zheng, Jing ;
Yang, Chongyin ;
Liou, Sz-Chian ;
Amine, Khalil ;
Xu, Kang ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2018, 13 (08) :715-+
[8]   Lithiophilic Three -Dimensional Porous Ti3C2Tx-rGO Membrane as a Stable Scaffold for Safe Alkali Metal (Li or Na) Anodes [J].
Fang, Yongzheng ;
Zhang, Ying ;
Zhu, Kai ;
Lian, Ruqian ;
Gao, Yu ;
Yin, Jinling ;
Ye, Ke ;
Cheng, Kui ;
Yan, Jun ;
Wang, Guiling ;
Wei, Yingjin ;
Cao, Dianxue .
ACS NANO, 2019, 13 (12) :14319-14328
[9]   High-performance all-solid-state polymer electrolyte with fast conductivity pathway formed by hierarchical structure polyamide 6 nanofiber for lithium metal battery [J].
Gao, Lu ;
Li, Jianxin ;
Ju, Jingge ;
Cheng, Bowen ;
Kang, Weimin ;
Deng, Nanping .
JOURNAL OF ENERGY CHEMISTRY, 2021, 54 :644-654
[10]   Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions [J].
Gao, Yue ;
Yan, Zhifei ;
Gray, Jennifer L. ;
He, Xin ;
Wang, Daiwei ;
Chen, Tianhang ;
Huang, Qingquan ;
Li, Yuguang C. ;
Wang, Haiying ;
Kim, Seong H. ;
Mallouk, Thomas E. ;
Wang, Donghai .
NATURE MATERIALS, 2019, 18 (04) :384-+