Influence of growth temperature on growth of InGaAs nanowires in selective-area metal-organic vapor-phase epitaxy

被引:24
作者
Kohashi, Yoshinori [1 ]
Sato, Takuya [1 ,2 ]
Ikejiri, Keitaro [1 ,2 ]
Tomioka, Katsuhiro [2 ,3 ]
Hara, Shinjiroh [1 ,2 ]
Motohisa, Junichi [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
[2] Hokkaido Univ, Res Ctr Integrated Quantum Elect, Sapporo, Hokkaido 0608628, Japan
[3] Japan Sci & Technol Agcy, JST PREST, Kawaguchi, Saitama 3320012, Japan
关键词
Nanostructures; Metal-organic vapor phase epitaxy; Selective epitaxy; Semiconducting III-V materials; Semiconducting ternary compounds; CATALYST-FREE GROWTH; GAAS NANOWIRES; SURFACE; MOVPE; DENSITY; SILICON;
D O I
10.1016/j.jcrysgro.2011.10.041
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Indium-rich InGaAs nanowires were grown on an InP (111)B substrate by catalyst-free selective-area metal-organic vapor phase epitaxy, and the growth-temperature dependence of growth rate and composition was studied. In particular, nanowire growth rate rapidly decreases as growth temperature increases. This tendency is opposite (for a similar temperature range) to that found in a previous study on selective-area growth of gallium-rich InGaAs nanowires. This difference between indium-rich and gallium-rich nanowires suggests that the influence of growth temperature on the growth of InGaAs nanowires is dependent on the group-III supply ratio. On the basis of previous experimental observations in InAs and GaAs nanowires, temperature dependence of nanowire growth rate and its dependence on group-III supply ratio are predicted. A guideline to determine the optimum growth conditions of InGaAs nanowires is also discussed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 51
页数:5
相关论文
共 27 条
[1]   RECONSTRUCTIONS OF GAAS(1BAR1BAR1BAR) SURFACES OBSERVED BY SCANNING TUNNELING MICROSCOPY [J].
BIEGELSEN, DK ;
BRINGANS, RD ;
NORTHRUP, JE ;
SWARTZ, LE .
PHYSICAL REVIEW LETTERS, 1990, 65 (04) :452-455
[2]   High transconductance MISFET with a single InAs nanowire channel [J].
Do, Q.-T. ;
Blekker, K. ;
Regolin, I. ;
Prost, W. ;
Tegude, F. J. .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) :682-684
[3]   Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires [J].
Glas, Frank .
PHYSICAL REVIEW B, 2006, 74 (12)
[4]   Growth of Core-Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy [J].
Goto, Hajime ;
Nosaki, Katsutoshi ;
Tomioka, Katsuhiro ;
Hara, Shinjiro ;
Hiruma, Kenji ;
Motohisa, Junichi ;
Fukui, Takashi .
APPLIED PHYSICS EXPRESS, 2009, 2 (03)
[5]   Interface models and processing technologies for surface passivation and interface control in III-V semiconductor nanoelectronics [J].
Hasegawa, H. ;
Akazawa, M. .
APPLIED SURFACE SCIENCE, 2008, 254 (24) :8005-8015
[6]   Mechanism of catalyst-free growth of GaAs nanowires by selective area MOVPE [J].
Ikejiri, Keitaro ;
Noborisaka, Jinichiro ;
Hara, Shinjiroh ;
Motohisa, Junichi ;
Fukui, Takashi .
JOURNAL OF CRYSTAL GROWTH, 2007, 298 :616-619
[7]   Growth characteristics of GaAs nanowires obtained by selective area metal-organic vapour-phase epitaxy [J].
Ikejiri, Keitaro ;
Sato, Takuya ;
Yoshida, Hiroatsu ;
Hiruma, Kenji ;
Motohisa, Junichi ;
Hara, Shinjiroh ;
Fukui, Takashi .
NANOTECHNOLOGY, 2008, 19 (26)
[8]   Growth of III-V semiconductor nanowires by molecular beam epitaxy [J].
Jabeen, F. ;
Rubini, S. ;
Martelli, F. .
MICROELECTRONICS JOURNAL, 2009, 40 (03) :442-445
[9]   Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires [J].
Kim, Y ;
Joyce, HJ ;
Gao, O ;
Tan, HH ;
Jagadish, C ;
Paladugu, M ;
Zou, J ;
Suvorova, AA .
NANO LETTERS, 2006, 6 (04) :599-604
[10]   Epitaxial III-V nanowires on silicon [J].
Mårtensson, T ;
Svensson, CPT ;
Wacaser, BA ;
Larsson, MW ;
Seifert, W ;
Deppert, K ;
Gustafsson, A ;
Wallenberg, LR ;
Samuelson, L .
NANO LETTERS, 2004, 4 (10) :1987-1990