Descent-cycling in Schubert calculus

被引:10
作者
Knutson, A [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1080/10586458.2001.10504455
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two lemmata about Schubert calculus on generalized flag manifolds G/B, and in the case of the ordinary flag manifold GL(n)/B we interpret them combinatorially in terms of descents, and geometrically in terms of missing subspaces. One of them gives a symmetry of Schubert calculus that we christen descent-cycling. Computer experiment shows these two lemmata are surprisingly powerful: they already suffice to determine all of GL(n) Schubert calculus through n=5, and 99.97%+ at n=6. We use them to give a quick proof of Monk's rule. The lemmata also hold in equivariant ("double") Schubert calculus for Kac-Moody groups G.
引用
收藏
页码:345 / 353
页数:9
相关论文
共 11 条
[1]   Schubert polynomials, the Bruhat order, and the geometry of flag manifolds [J].
Bergeron, N ;
Sottile, F .
DUKE MATHEMATICAL JOURNAL, 1998, 95 (02) :373-423
[2]  
Bernstein I. N., 1973, USP MAT NAUK, V28, P3
[3]  
Demazure M., 1974, ANN SCI ECOLE NORM S, V7, P53
[4]  
GRAHAM W, 1999, POSITIVITY EQUIVARIA
[5]  
KNUTSON A, 2001, UNPUB PUZZLES EQUIVA
[6]   THE NIL HECKE RING AND COHOMOLOGY OF G/P FOR A KAC-MOODY GROUP-G [J].
KOSTANT, B ;
KUMAR, S .
ADVANCES IN MATHEMATICS, 1986, 62 (03) :187-237
[7]  
LASCOUX A, 1982, CR ACAD SCI I-MATH, V294, P447
[8]  
Monk D, 1959, P LOND MATH SOC, V9, P253
[9]  
ROBINSON S, 2001, UNPUB EQUIVARIANT PI
[10]   Pieri's formula for flag manifolds and Schubert polynomials [J].
Sottile, F .
ANNALES DE L INSTITUT FOURIER, 1996, 46 (01) :89-&