Conditional expanding bounds for two-variable functions over finite valuation rings

被引:5
作者
Le Quang Ham [1 ]
Pham Van Thang [2 ]
Le Anh Vinh [3 ]
机构
[1] Vietnam Natl Univ Hanoi, Univ Sci, Hanoi, Vietnam
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] Vietnam Natl Univ Hanoi, Univ Educ, Hanoi, Vietnam
基金
瑞士国家科学基金会;
关键词
SUM-PRODUCT ESTIMATE; FIELDS;
D O I
10.1016/j.ejc.2016.09.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use methods from spectral graph theory to obtain some results on the sum-product problem over finite valuation rings R of order q(r) which generalize recent results given by Hegyvari and Hennecart (2013). More precisely, we prove that, for related pairs of two-variable functions f(x, y) and g(x, y), if A and B are two sets in R* with vertical bar A vertical bar = vertical bar B vertical bar = q(alpha), then max {vertical bar f(A, B)vertical bar, vertical bar g(A, B)vertical bar} >> vertical bar A vertical bar(1+Delta(alpha)), for some Delta(alpha) > 0. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:114 / 123
页数:10
相关论文
共 29 条