A Lagrangian description of the higher-order Painlev, equations

被引:0
作者
Choudhury, A. Ghose [1 ,2 ]
Guha, Partha [1 ,2 ]
Kudryashov, N. A. [3 ]
机构
[1] Surendranath Coll, Dept Phys, Kolkata 700009, W Bengal, India
[2] SN Bose Natl Ctr Basic Sci, Kolkata 700098, India
[3] Natl Res Nucl Univ, Dept Appl Math, Moscow 115409, Russia
关键词
Higher-order Painleve equation; Painleve test; Lagrangian; Juras conditions; ORDINARY DIFFERENTIAL-EQUATIONS; INVERSE PROBLEM; 1ST; CALCULUS; POINTS;
D O I
10.1134/S0965542512050089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive the Lagrangians of the higher-order Painlev, equations using Jacobi's last multiplier technique. Some of these higher-order differential equations display certain remarkable properties like passing the Painlev, test and satisfy the conditions stated by Jura, thus allowing for a Lagrangian description.
引用
收藏
页码:746 / 755
页数:10
相关论文
共 50 条
[21]   Higher-Order Hamiltonian for Circuits with (α,β) Elements [J].
Biolek, Zdenek ;
Biolek, Dalibor ;
Biolkova, Viera ;
Kolka, Zdenek .
ENTROPY, 2020, 22 (04)
[22]   A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC [J].
Mitani, Yo ;
Kobayashi, Naoki ;
Tsukada, Takeshi .
LOGICAL METHODS IN COMPUTER SCIENCE, 2021, 17 (04)
[23]   Higher-Order Efficiency Conditions for Vector Nonsmooth Optimization Problems Using the Higher-Order Gâteaux Derivatives [J].
Van Su, Tran ;
Hang, Dinh Dieu .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (05)
[24]   A 3D Lagrangian cell-centered hydrodynamic method with higher-order reconstructions for gas and solid dynamics [J].
Chiravalle, Vincent P. ;
Morgan, Nathaniel R. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (02) :298-317
[25]   On Decidability of the Bisimilarity on Higher-order Processes with Parameterization* [J].
Xu, Xian ;
Zhang, Wenbo .
ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2021, (339) :76-92
[26]   Environmental Bisimulations for Probabilistic Higher-order Languages [J].
Sangiorgi, Davide ;
Vignudelli, Valeria .
ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2019, 41 (04)
[27]   Higher-order numerical derivatives for photonic applications [J].
Lopez Zavala, Luis David ;
Shulika, Oleksiy, V .
OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XIV, 2020, 11509
[28]   Higher-order Erdos-Szekeres theorems [J].
Elias, Marek ;
Matousek, Jiri .
ADVANCES IN MATHEMATICS, 2013, 244 :1-15
[29]   Parameterizing higher-order processes on names and processes*** [J].
Xu, Xian .
RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2019, 53 (3-4) :153-206
[30]   On the Relative Expressiveness of Higher-Order Session Processes [J].
Kouzapas, Dimitrios ;
Perez, Jorge A. ;
Yoshida, Nobuko .
PROGRAMMING LANGUAGES AND SYSTEMS (ESOP 2016), 2016, 9632 :446-475