A Lagrangian description of the higher-order Painlev, equations

被引:0
|
作者
Choudhury, A. Ghose [1 ,2 ]
Guha, Partha [1 ,2 ]
Kudryashov, N. A. [3 ]
机构
[1] Surendranath Coll, Dept Phys, Kolkata 700009, W Bengal, India
[2] SN Bose Natl Ctr Basic Sci, Kolkata 700098, India
[3] Natl Res Nucl Univ, Dept Appl Math, Moscow 115409, Russia
关键词
Higher-order Painleve equation; Painleve test; Lagrangian; Juras conditions; ORDINARY DIFFERENTIAL-EQUATIONS; INVERSE PROBLEM; 1ST; CALCULUS; POINTS;
D O I
10.1134/S0965542512050089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive the Lagrangians of the higher-order Painlev, equations using Jacobi's last multiplier technique. Some of these higher-order differential equations display certain remarkable properties like passing the Painlev, test and satisfy the conditions stated by Jura, thus allowing for a Lagrangian description.
引用
收藏
页码:746 / 755
页数:10
相关论文
共 50 条
  • [1] A Lagrangian description of the higher-order Painlevé equations
    A. Ghose Choudhury
    Partha Guha
    N. A. Kudryashov
    Computational Mathematics and Mathematical Physics, 2012, 52 : 746 - 755
  • [2] A Lagrangian description of the higher-order Painleve equations
    Choudhury, A. Ghose
    Guha, Partha
    Kudryashov, Nikolay A.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (11) : 6612 - 6619
  • [3] On the Theory of Higher-Order Painlevé Equations
    V. I. Gromak
    A. S. Zenchenko
    Differential Equations, 2004, 40 : 625 - 633
  • [4] Higher-order Lagrangian equations of higher-order motive mechanical system
    Zhao Hong-Xia
    Ma Shan-Jun
    Shi Yong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (02) : 479 - 481
  • [5] Higher-Order Lagrangian Equations of Higher-Order Motive Mechanical System
    ZHAO Hong-Xia MA Shan-Jun SHI Yong College of Physics and Communication Electronics
    Communications in Theoretical Physics, 2008, 49 (02) : 479 - 481
  • [6] HIGHER-ORDER DIFFERENTIAL-EQUATIONS AND HIGHER-ORDER LAGRANGIAN MECHANICS
    CRAMPIN, M
    SARLET, W
    CANTRIJN, F
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1986, 99 : 565 - 587
  • [7] LAGRANGIAN SUBMANIFOLDS AND THE EULER LAGRANGE EQUATIONS IN HIGHER-ORDER MECHANICS
    CRAMPIN, M
    LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (01) : 53 - 58
  • [8] LAGRANGIAN SUBMANIFOLDS AND HIGHER-ORDER LAGRANGIAN DYNAMICS
    DELEON, M
    LACOMBA, EA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1988, 307 (10): : 1137 - 1139
  • [9] Painlevé Test and Higher Order Differential Equations
    Uğurhan Muğan
    Fahd Jrad
    Journal of Nonlinear Mathematical Physics, 2002, 9 : 282 - 310
  • [10] Higher-order discrete Lagrangian mechanics
    Benito, Roberto
    De Leon, Manuel
    Martin De Diego, D.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) : 421 - 436