Some results on linear nabla Riemann-Liouville fractional difference equations

被引:2
|
作者
The Anh, Pham [1 ]
Babiarz, Artur [2 ]
Czornik, Adam [2 ]
Niezabitowski, Michal [2 ]
Siegmund, Stefan [3 ]
机构
[1] Le Quy Don Tech Univ, Dept Math, 236 Hoang Quoc Viet, Hanoi, Vietnam
[2] Silesian Tech Univ, Fac Automat Control Elect & Comp Sci, Akad 16, PL-44100 Gliwice, Poland
[3] Tech Univ Dresden, Fac Math, Ctr Dynam, Zellescher Weg 12-14, D-01069 Dresden, Germany
关键词
fractional difference equations; Lyapunov exponent; nabla Riemann-Liouville difference; STABILITY; SYSTEMS;
D O I
10.1002/mma.6337
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some criteria for boundedness, stability properties, and separation of solutions of autonomous nonlinear nabla Riemann-Liouville scalar fractional difference equations. To derive these results, we prove the variation of constants formula for nabla Riemann-Liouville fractional difference equations.
引用
收藏
页码:7815 / 7824
页数:10
相关论文
共 50 条
  • [1] Monotonicity Results for Nabla Riemann-Liouville Fractional Differences
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Balea, Itru
    Jan, Rashid
    Abualnaja, Khadijah M.
    MATHEMATICS, 2022, 10 (14)
  • [2] Linearized asymptotic stability for nabla Riemann-Liouville fractional difference equation
    Anh, Pham The
    Czornik, Adam
    Niezabitowski, Michal
    ARCHIVES OF CONTROL SCIENCES, 2024, 34 (03): : 569 - 588
  • [3] Some boundedness results for Ψ-Riemann-Liouville and Ψ-Riemann-Liouville tempered fractional integrals in R
    Ledesma, Cesar E. Torres
    Rodriguez, Jesus A.
    Zuniga, Felipe A.
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [4] The Solutions of Some Riemann-Liouville Fractional Integral Equations
    Kaewnimit, Karuna
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [5] Uncertain fractional forward difference equations for Riemann-Liouville type
    Lu, Qinyun
    Zhu, Yuanguo
    Lu, Ziqiang
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [6] Degenerate Linear Evolution Equations with the Riemann-Liouville Fractional Derivative
    Fedorov, V. E.
    Plekhanova, M. V.
    Nazhimov, R. R.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (01) : 136 - 146
  • [7] Existence results for Riemann-Liouville fractional neutral evolution equations
    Liu, Yi-Liang
    Lv, Jing-Yun
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [8] Existence results for Riemann-Liouville fractional neutral evolution equations
    Yi-Liang Liu
    Jing-Yun Lv
    Advances in Difference Equations, 2014
  • [9] Some boundedness results for Riemann-Liouville tempered fractional integrals
    César E. Torres Ledesma
    Hernán A. Cuti Gutierrez
    Jesús P. Avalos Rodríguez
    Willy Zubiaga Vera
    Fractional Calculus and Applied Analysis, 2024, 27 : 818 - 847
  • [10] Some boundedness results for Riemann-Liouville tempered fractional integrals
    Ledesma, Cesar E. Torres
    Gutierrez, Hernan A. Cuti
    Rodriguez, Jesus P. Avalos
    Vera, Willy Zubiaga
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (02) : 818 - 847